Skip to main content

Genetically Modified Bacillus thuringiensis Biopesticides

  • Chapter
  • First Online:

Abstract

The reduction in crop production that results from damages of pests and pathogenic microbes has been the major prohibitive factor restricting the further development of agricultural production worldwide. In the long-term practice of controlling agricultural pests, multiple pest management, including biological approaches, are generally recognized as possible solutions to control pest infestation effectively. Bacterial pesticides, which constitute a series of leading biopesticidal products made from various naturally occurring or genetically modified insecticidal bacteria, have attracted increasing attention as a specific means of controlling agricultural and forestry pests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams LF, Visick JE, Whiteley HR (1989) A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol 171:521–530

    CAS  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    CAS  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119

    Article  CAS  Google Scholar 

  • Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50(1):1–24

    CAS  Google Scholar 

  • Barboza-Corona JE, Ortiz-Rodriguez T, de la Fuente-Salcido N, Bideshi DK, Ibarra JE, Salcedo-Hernandez R (2009) Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis. Antonie Van Leeuwenhoek 96:31–42

    Article  CAS  Google Scholar 

  • Baum JA, Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18:1–12

    Article  CAS  Google Scholar 

  • Baum JA, Coyle DM, Gilbert MP, Jany CS, Gawron-Burke C (1990) Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol 56:3420–3428

    CAS  Google Scholar 

  • Baum JA, Kakefuda M, Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol 62:4367–4373

    CAS  Google Scholar 

  • Brown KL (1993) Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon. J Bacteriol 175:7951–7957

    CAS  Google Scholar 

  • Calogero S, Albertini AM, Fogher C, Marzari R, Galizzi A (1989) Expression of a cloned Bacillus thuringiensis delta-endotoxin gene in Bacillus subtilis. Appl Environ Microbiol 55:446–453

    CAS  Google Scholar 

  • Carlton BC, Gawron-Burke MC, Johnson TB (1990) Exploiting the genetic diversity of Bacillus thuringiensis for the creation of new bioinsecticides. In: Proceedings and abstracts, the Vth International Colloquium on Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20–24 Aug. 1990, pp 18–22

    Google Scholar 

  • Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57:3057–3061

    CAS  Google Scholar 

  • Chak KF, Kao SS, Feng TY (1994) Characterization and cry gene typing of Bacillus thuringiensis isolates from Taiwan. In: Feng TY, Chak K-F, Smith R et al (eds) Bacillus thuringiensis biotechnology and environmental benefits, vol 1. Hua Shiang Yuan Publishing Co., Taipel, pp 105–123

    Google Scholar 

  • Chaoyin Y, Wei S, Sun M, Lin L, Faju C, Zhengquan H, Ziniu Y (2007) Comparative study on effect of different promoters on expression of cry1Ac in Bacillus thuringiensis chromosome. J Appl Microbiol 103:454–461

    Article  CAS  Google Scholar 

  • Chungjatupornchai W (1990) Expression of the mosquitocidal-protein genes of Bacillus thuringiensis subsp. israelensis and the herbicide-resistance gene bar in Synechocystis PCC6803. Curr Microbiol 21:283–288

    Article  CAS  Google Scholar 

  • Clark BD (1987) Characterization of plasmids from Bacillus thuringiensis var. israelensis. Ph D thesis, The Ohio State University, USA

    Google Scholar 

  • Crawford IT, Greis KD, Parks L, Streips UN (1987) Facile autoplast generation and transformation in Bacillus thuringiensis subsp. kurstaki. J Bacteriol 169:5423–5428

    CAS  Google Scholar 

  • Crickmore N, Ellar DJ (1992) Involvement of a possible chaperonin in the efficient expression of a cloned CryIIA delta-endotoxin gene in Bacillus thuringiensis. Mol Microbiol 6:1533–1537

    Article  CAS  Google Scholar 

  • Crickmore N, Bone EJ, Ellar DJ (1990a) Genetic manipulation of Bacillus thuringiensis: towards an improved pesticide. Asp Appl Biol 24:17–24

    Google Scholar 

  • Crickmore N, Nicholls C, Earp DJ, Hodgman TC, Ellar DJ (1990b) The construction of Bacillus thuringiensis strains expressing novel entomocidal delta-endotoxin combinations. Biochem J 270:133–136

    CAS  Google Scholar 

  • Crickmore N, Wheeler VC, Ellar DJ (1994) Use of an operon fusion to induce expression and crystallisation of a Bacillus thuringiensis delta-endotoxin encoded by a cryptic gene. Mol Gen Genet 242:365–368

    Article  CAS  Google Scholar 

  • Dankocsik C, Donovan WP, Jany CS (1990) Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Mol Microbiol 4:2087–2094

    Article  CAS  Google Scholar 

  • Delecluse A, Charles JF, Klier A, Rapoport G (1991) Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J Bacteriol 173:3374–3381

    CAS  Google Scholar 

  • Dervyn E, Poncet S, Klier A, Rapoport G (1995) Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177:2283–2291

    CAS  Google Scholar 

  • Douek J, Einav M, Zaritsky A (1992) Sensitivity to plating of Escherichia coli cells expressing the cryA gene from Bacillus thuringiensis var. israelensis. Mol Gen Genet 232:162–165

    Article  CAS  Google Scholar 

  • Driss F, Rouis S, Azzouz H, Tounsi S, Zouari N, Jaoua S (2011) Integration of a recombinant chitinase into Bacillus thuringiensis parasporal insecticidal crystal. Curr Microbiol 62:281–288

    Article  CAS  Google Scholar 

  • Ferrari FA, Nguyen A, Lang D, Hoch JA (1983) Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol 154:1513–1515

    CAS  Google Scholar 

  • Fischer HM, Luthy P, Schweitzer S (1984) Introduction of plasmid pC194 into Bacillus thuringiensis by protoplast transformation and plasmid transfer. Arch Microbiol 139:213–217

    Article  CAS  Google Scholar 

  • Gamel PH, Piot JC (1992) Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. Gene 120:17–26

    Article  CAS  Google Scholar 

  • Ge AZ, Pfister RM, Dean DH (1990) Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. Gene 93:49–54

    Article  CAS  Google Scholar 

  • Ge AZ, Rivers D, Milne R, Dean DH (1991) Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). J Biol Chem 266(27):17954–17958

    CAS  Google Scholar 

  • Gleave AP, Williams R, Hedges RJ (1993) Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cryV-like insecticidal protein genes and characterization of a cryV gene cloned from B. thuringiensis subsp. kurstaki. Appl Environ Microbiol 59:1683–1687

    CAS  Google Scholar 

  • Gonzalez JM Jr, Dulmage HT, Carlton BC (1981) Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5:352–365

    Article  Google Scholar 

  • Herrnstadt C, Gilroy TE, Sobieski DA, Bennett BD, Gaertner FH (1987) Nucleotide sequence and deduced amino acid sequence of a coleopteran-active delta-endotoxin gene from Bacillus thuringiensis subsp. san diego. Gene 57:37–46

    Article  CAS  Google Scholar 

  • Hodgman TC, Ziniu Y, Shen J, Ellar DJ (1993) Identification of a cryptic gene associated with an insertion sequence not previously identified in Bacillus thuringiensis. FEMS Microbiol Lett 114:23–29

    Article  CAS  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53(2):242–255

    CAS  Google Scholar 

  • Hofte H, Seurinck J, Van Houtven A, Vaeck M (1987) Nucleotide sequence of a gene encoding an insecticidal protein of Bacillus thuringiensis var. tenebrionis toxic against Coleoptera. Nucleic Acids Res 15:7183

    Article  CAS  Google Scholar 

  • Hu SB, Liu P, Ding XZ, Yan L, Sun YJ, Zhang YM, Li WP, Xia LQ (2009) Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Appl Microbiol Biotechnol 82:1157–1167

    Article  CAS  Google Scholar 

  • Johnson DE (1981) Preparing entomocidal products with oligosprogenic mutants of Bacillus thuringiensis. US Patent 4,277,546

    Google Scholar 

  • Kalman S, Kiehne KL, Libs JL, Yamamoto T (1993) Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl Environ Microbiol 59:1131–1137

    CAS  Google Scholar 

  • Kalman S, Kiehne KL, Cooper N, Reynoso MS, Yamamoto T (1995) Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl Environ Microbiol 61:3063–3068

    CAS  Google Scholar 

  • Karamata D, Luthy P (1989) Insecticidal hybrid bacteria from B.t. kurstaki and B.t. tenebrionis. US Patent 4,797,279

    Google Scholar 

  • Keller B, Langenbruch GA (1993) Control of coleopteran pests by Bacillus thuringiensis. In: Entwist PF, Cory JS, Bailey MJ et al (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 171–191

    Google Scholar 

  • Klier A, Bourgouin C, Rapoport G (1983) Mating between Bacillus subtilis and Bacillus thuringiensis and transfer of cloned crystal genes. Mol Gen Genet 191:257–262

    Article  CAS  Google Scholar 

  • Krieg A, Huger AM, Langenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis, a new pathotype effective against larvae of Coleoptera. Z Angew Entomol 96:500–508

    Article  Google Scholar 

  • Kuo WS, Chak KF (1996) Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl Environ Microbiol 62:1369–1377

    CAS  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    CAS  Google Scholar 

  • Leonard C, Zekri O, Mahillon J (1998) Integrated physical and genetic mapping of Bacillus cereus and other gram-positive bacteria based on IS231A transposition vectors. Infect Immun 66:2163–2169

    CAS  Google Scholar 

  • Lereclus D, Arantes O, Chaufaux J, Lecadet M (1989) Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 51:211–217

    CAS  Google Scholar 

  • Lereclus D, Vallade M, Chaufaux J, Arantes O, Rambaud S (1992) Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Biotechnology (NY) 10:418–421

    Article  CAS  Google Scholar 

  • Li L, Yu Z (1999) Transformation and expression properties of a Bacillus thuringiensis plasmid-free derivative strain BMB171. Chin J Appl Environ Biol 5:395–399

    Google Scholar 

  • Li L, Yang C, Liu Z, Li F, Yu Z (2000) Screening of acrystalliferous mutants from Bacillus thuringiensis and their transformation properties. Acta Microbiol Sin 40:85–90

    CAS  Google Scholar 

  • Liu Z, Sun M, Yu Z, Zaritsky A, Ben-Dov E, Manasherob R (1999) Preliminary study of p19 gene from Bacillus thuringiensis subsp israelensis. Acta Microbiol Sin 39:114–119

    CAS  Google Scholar 

  • Lluisma AO, Karmacharya N, Zarka A, Ben-Dov E, Zaritsky A, Boussiba S (2001a) Suitability of Anabaena PCC7120 expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis for biotechnological application. Appl Microbiol Biotechnol 57(1–2):161–166

    Article  CAS  Google Scholar 

  • Lluisma AO, Karmacharya N, Zarka A, Ben-Dov E, Zaritsky A, Boussiba S (2001b) Suitability of Anabaena PCC7120 expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis for biotechnological application. Appl Microbiol Biotechnol 57:161–166

    Article  CAS  Google Scholar 

  • Lu S, Liu Z, Dai J, Yu Z (1999a) Preliminary studies on cloning and expression of Bacillus thuringiensis cry11A gene in Anabaena. Acta Hydrobiol Sin 23:174–178

    CAS  Google Scholar 

  • Lu S, Liu Z, Dai J, Yu Z (1999b) Preliminary studies on cloning and expression of Bacillus thuringiensis cry11A gene in Anabaena. Acta Hydrobiol Sin 23(2):174–178

    CAS  Google Scholar 

  • Lu SQ, Liu ZD, Yu ZN (2000) The characterization of Bacillus thuringiensis strain YBT833 and its transformants that containing different ICP genes. Acta Genet Sin 27:839–844

    CAS  Google Scholar 

  • Mahillon J, Kleckner N (1992) New IS10 transposition vectors based on a gram-positive replication origin. Gene 116:69–74

    Article  CAS  Google Scholar 

  • Mahillon J, Rezsohazy R, Hallet B, Delcour J (1994) IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93:13–26

    Article  CAS  Google Scholar 

  • Malvar T, Gawron-Burke C, Baum JA (1994) Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryIIIA overproduction. J Bacteriol 176:4742–4749

    CAS  Google Scholar 

  • Manasherob R, Ben-Dov E, Xiaoqiang W, Boussiba S, Zaritsky A (2002a) Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC 7120. Curr Microbiol 45(3):217–220

    Article  CAS  Google Scholar 

  • Manasherob R, Ben-Dov E, Xiaoqiang W, Boussiba S, Zaritsky A (2002b) Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC 7120. Curr Microbiol 45:217–220

    Article  CAS  Google Scholar 

  • Manasherob R, Otieno-Ayayo ZN, Ben-Dov E, Miaskovsky R, Boussiba S, Zaritsky A (2003a) Enduring toxicity of transgenic Anabaena PCC 7120 expressing mosquito larvicidal genes from Bacillus thuringiensis ssp. israelensis. Environ Microbiol 5:997–1001

    Article  CAS  Google Scholar 

  • Manasherob R, Otieno-Ayayo ZN, Ben-Dov E, Miaskovsky R, Boussiba S, Zaritsky A (2003b) Enduring toxicity of transgenic Anabaena PCC 7120 expressing mosquito larvicidal genes from Bacillus thuringiensis ssp. israelensis. Environ Microbiol 5(10):997–1001

    Article  CAS  Google Scholar 

  • Martin PA, Lohr JR, Dean DH (1981) Transformation of Bacillus thuringiensis protoplasts by plasmid deoxyribonucleic acid. J Bacteriol 145:980–983

    CAS  Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229(4709):193–195

    Article  CAS  Google Scholar 

  • Mettus AM, Macaluso A (1990) Expression of Bacillus thuringiensis delta-endotoxin genes during vegetative growth. Appl Environ Microbiol 56:1128–1134

    CAS  Google Scholar 

  • Nambiar PT, Ma SW, Iyer VN (1990) Limiting an Insect Infestation of nitrogen-fixing root nodules of the pigeon pea (Cajanus cajan) by engineering the expression of an entomocidal gene in its root nodules. Appl Environ Microbiol 56:2866–2869

    CAS  Google Scholar 

  • O’Grady J, Akhurst RJ, Kotze AC (2007) The requirement for early exposure of Haemonchus contortus larvae to Bacillus thuringiensis for effective inhibition of larval development. Vet Parasitol 150:97–103

    Article  Google Scholar 

  • Obukowicz MG, Perlak FJ, Kusano-Kretzmer K, Mayer EJ, Bolten SL, Watrud LS (1986a) Tn5-mediated integration of the delta-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing pseudomonads. J Bacteriol 168:982–989

    CAS  Google Scholar 

  • Obukowicz MG, Perlak FJ, Kusano-Kretzmer K, Mayer EJ, Watrud LS (1986b) Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene 45:327–331

    Article  CAS  Google Scholar 

  • Obukowicz MG, Perlak FJ, Bolten SL, Kusano-Kretzmer K, Mayer EJ, Watrud LS (1987) IS50L as a non-self transposable vector used to integrate the Bacillus thuringiensis delta-endotoxin gene into the chromosome of root-colonizing pseudomonads. Gene 51:91–96

    Article  CAS  Google Scholar 

  • Panetta JD (2010) Environmental and regulatory aspects: industry view and approach. In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery. Humana Press Inc., USA, pp 473–484

    Google Scholar 

  • Pardo-Lopez L, Munoz-Garay C, Porta H, Rodriguez-Almazan C, Soberon M, Bravo A (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30:589–595

    Article  CAS  Google Scholar 

  • Park HW, Bideshi DK, Federici BA (2003) Recombinant strain of Bacillus thuringiensis producing Cyt1A, Cry11B, and the Bacillus sphaericus binary toxin. Appl Environ Microbiol 69:1331–1334

    Article  CAS  Google Scholar 

  • Park HW, Bideshi DK, Federici BA (2005a) Synthesis of additional endotoxins in Bacillus thuringiensis subsp. morrisoni PG-14 and Bacillus thuringiensis subsp. jegathesan significantly improves their mosquitocidal efficacy. J Med Entomol 42:337–341

    Article  CAS  Google Scholar 

  • Park HW, Bideshi DK, Wirth MC, Johnson JJ, Walton WE, Federici BA (2005b) Recombinant larvicidal bacteria with markedly improved efficacy against culex vectors of west nile virus. Am J Trop Med Hyg 72:732–738

    CAS  Google Scholar 

  • Peng D, Xu X, Ruan L, Yu Z, Sun M (2010) Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Res Microbiol 161:383–389

    Article  CAS  Google Scholar 

  • Perez-Garcia G, Basurto-Rios R, Ibarra JE (2010) Potential effect of a putative sigma(H)-driven promoter on the over expression of the Cry1Ac toxin of Bacillus thuringiensis. J Invertebr Pathol 104:140–146

    Article  CAS  Google Scholar 

  • Poncet S, Delecluse A, Anello G, Klier A, Rapoport G (1994) Transfer and expression of the cryIVB and cryIVD genes of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus 2297. FEMS Microbiol Lett 117:91–95

    Article  CAS  Google Scholar 

  • Poncet S, Bernard C, Dervyn E, Cayley J, Klier A, Rapoport G (1997) Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63:4413–4420

    CAS  Google Scholar 

  • Raddadi N, Belaouis A, Tamagnini I, Hansen BM, Hendriksen NB, Boudabous A, Cherif A, Daffonchio D (2009) Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. J Basic Microbiol 49:293–303

    Article  CAS  Google Scholar 

  • Rang C, Bes M, Lullien-Pellerin V, Wu D, Federici BA, Frutos R (1996) Influence of the 20-kDa protein from Bacillus thuringiensis ssp. israelensis on the rate of production of truncated Cry1C proteins. FEMS Microbiol Lett 141:261–264

    Article  CAS  Google Scholar 

  • Ribeiro BM, Crook NE (1993) Expression of full-length and truncated forms of crystal protein genes from Bacillus thuringiensis subsp. kurstaki in a baculovirus and pathogenicity of the recombinant viruses. J Invertebr Pathol 62:121–130

    Article  CAS  Google Scholar 

  • Ribeiro BM, Crook NE (1998) Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis. Braz J Med Biol Res 31:763–769

    Article  CAS  Google Scholar 

  • Salehi Jouzani G, Seifinejad A, Saeedizadeh A, Nazarian A, Yousefloo M, Soheilivand S, Mousivand M, Jahangiri R, Yazdani M, Amiri RM, Akbari S (2008) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Can J Microbiol 54:812–822

    Article  CAS  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011a) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9(3):283–300

    Article  CAS  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011b) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1997) A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63:779–784

    CAS  Google Scholar 

  • Sansinenea E, Sanchez P, Anastacio E, Ibarra J, Olmedo G, Vazquez C (2010a) Homologous recombination to Bacillus thuringiensis chromosome in one step. Agrociencia 44:437–447

    Google Scholar 

  • Sansinenea E, Vazquez C, Ortiz A (2010b) Genetic manipulation in Bacillus thuringiensis for strain improvement. Biotechnol Lett 32:1549–1557

    Article  CAS  Google Scholar 

  • Schnepf HE, Whiteley HR (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci U S A 78:2893–2897

    Article  CAS  Google Scholar 

  • Schnepf HE, Wong HC, Whiteley HR (1985) The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J Biol Chem 260:6264–6272

    CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Sekar V, Thompson DV, Maroney MJ, Bookland RG, Adang MJ (1987) Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis. Proc Natl Acad Sci U S A 84:7036–7040

    Article  CAS  Google Scholar 

  • Selinger LB, Khachatourians GG, Byers JR, Hynes MF (1998) Expression of a Bacillus thuringiensis delta-endotoxin gene by Bacillus pumilus. Can J Microbiol 44:259–269

    CAS  Google Scholar 

  • Sellami S, Jamoussi K, Dabbeche E, Jaoua S (2011) Increase of the Bacillus thuringiensis secreted toxicity against Lepidopteron larvae by homologous expression of the vip3LB gene during sporulation stage. Curr Microbiol 63:289–294

    Article  CAS  Google Scholar 

  • Shao Z, Yu Z (2004) Enhanced expression of insecticidal crystal proteins in wild Bacillus thuringiensis strains by a heterogeneous protein P20. Curr Microbiol 48:321–326

    Article  CAS  Google Scholar 

  • Shao Z, Liu Z, Yu Z (2001) Effects of the 20-kilodalton helper protein on Cry1Ac production and spore formation in Bacillus thuringiensis. Appl Environ Microbiol 67:5362–5369

    Article  CAS  Google Scholar 

  • Shivakumar AG, Gundling GJ, Benson TA, Casuto D, Miller MF, Spear BB (1986) Vegetative expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis. J Bacteriol 166:194–204

    CAS  Google Scholar 

  • Shivakumar AG, Vanags RI, Wilcox DR, Katz L, Vary PS, Fox JL (1989) Gene dosage effect on the expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis and Bacillus megaterium. Gene 79:21–31

    Article  CAS  Google Scholar 

  • Sirichotpakorn N, Rongnoparut P, Choosang K, Panbangred W (2001) Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol 78:160–169

    Article  CAS  Google Scholar 

  • Soares GG, Quick TC (1990) MVP, a novel bioinsecticide, for the control of diamondback moth. In Proceedings of the Second International Workshop, 10–14 Dec. 1990, Taiwan

    Google Scholar 

  • Stahly DP, Dingman DW, Bulla LA Jr, Aronson AI (1978) Possible origin and function of the parasporal crystal in Bacillus thuringiensis. Biochem Biophys Res Commun 84:581–588

    Article  CAS  Google Scholar 

  • Sun M, Yu Z (2000) Recent developments in the biotechnology of Bacillus thuringiensis. Biotechnol Adv 18:143–145

    Article  CAS  Google Scholar 

  • Sun M, Yue C, Yu Z (2000) Construction of integrative vector with Bacillus thuringiensis transposon Tn4430. J Agric Biotechnol (Chn) 8:321–326

    Google Scholar 

  • Thamthiankul S, Moar WJ, Miller ME, Panbangred W (2004) Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biotechnol 65:183–192

    Article  CAS  Google Scholar 

  • Thamthiankul Chankhamhaengdecha S, Tantichodok A, Panbangred W (2008) Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. J Biotechnol 136:122–128

    Article  CAS  Google Scholar 

  • Thompson MA, Gaertner FH (1990) Novel Bacillus thuringiensis isolate having anti-protozoan activity. European Patent Application Number 0461799 A2

    Google Scholar 

  • Trisrisook M, Pantuwatana S, Bhumiratana A, Panbangred W (1990) Molecular cloning of the 130-kilodalton mosquitocidal delta-endotoxin gene of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus. Appl Environ Microbiol 56:1710–1716

    CAS  Google Scholar 

  • Vazquez-Pineda A, Yanez-Perez GN, Lopez-Arellano ME, Mendoza-de-Gives P, Liebano-Hernandez E, Bravo-de-la-Parra A (2010) Biochemical characterization of two purified proteins of the IB-16 Bacillus thuringiensis strains and their toxicity against the sheep nematode Haemonchus contortus in vitro. Transbound Emerg Dis 57:111–114

    Article  CAS  Google Scholar 

  • Visick JE, Whiteley HR (1991) Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli. J Bacteriol 173:1748–1756

    CAS  Google Scholar 

  • Vu KD, Yan S, Tyagi RD, Valero JR, Surampalli RY (2009) Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate. Bioresour Technol 100:5260–5269

    Article  CAS  Google Scholar 

  • Waalwijk C, Dullemans A, Maat C (1991) Construction of a bioinsecticidal rhizosphere isolate of Pseudomonas fluorescens. FEMS Microbiol Lett 77:257–263

    Article  CAS  Google Scholar 

  • Ward ES, Ellar DJ, Chilcott CN (1988) Single amino acid changes in the Bacillus thuringiensis var. israelensis delta-endotoxin affect the toxicity and expression of the protein. J Mol Biol 202:527–535

    Article  CAS  Google Scholar 

  • Widner WR, Whiteley HR (1989) Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J Bacteriol 171:965–974

    CAS  Google Scholar 

  • Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci U S A 94:10536–10540

    Article  CAS  Google Scholar 

  • Wirth MC, Walton WE, Federici BA (2000) Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 37:401–407

    Article  CAS  Google Scholar 

  • Wirth MC, Jiannino JA, Federici BA, Walton WE (2005a) Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus + Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae). J Invertebr Pathol 88:154–162

    Article  Google Scholar 

  • Wirth MC, Park HW, Walton WE, Federici BA (2005b) Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl Environ Microbiol 71:185–189

    Article  CAS  Google Scholar 

  • Wirth MC, Walton WE, Federici BA (2010) Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Environ Microbiol 12:1154–1160

    Article  CAS  Google Scholar 

  • Wong HC, Schnepf HE, Whiteley HR (1983) Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem 258:1960–1967

    CAS  Google Scholar 

  • Wu D, Chang FN (1985) Synergism in mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal. FEBS Lett 190:232–236

    Article  CAS  Google Scholar 

  • Wu D, Federici BA (1993) A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J Bacteriol 175:5276–5280

    CAS  Google Scholar 

  • Wu D, Federici BA (1995) Improved production of the insecticidal CryIVD protein in Bacillus thuringiensis using cryIA(c) promoters to express the gene for an associated 20-kDa protein. Appl Microbiol Biotechnol 42:697–702

    Article  CAS  Google Scholar 

  • Wu X, Vennison SJ, Huirong L, Ben-Dov E, Zaritsky A, Boussiba S (1997a) Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63(12):4971–4974

    CAS  Google Scholar 

  • Wu X, Vennison SJ, Huirong L, Ben-Dov E, Zaritsky A, Boussiba S (1997b) Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63:4971–4974

    CAS  Google Scholar 

  • Wu L, Sun M, Yu Z (2000) A new resolution vector with cry1Ac10 gene based on Bacillus thuringiensis transposon Tn4430. Acta Microbiol Sin 40:264–269

    CAS  Google Scholar 

  • Xia L, Long X, Ding X, Zhang Y (2009a) Increase in insecticidal toxicity by fusion of the cry1Ac gene from Bacillus thuringiensis with the neurotoxin gene hwtx-I. Curr Microbiol 58:52–57

    Article  CAS  Google Scholar 

  • Xia L, Zeng Z, Ding X, Huang F (2009b) The expression of a recombinant cry1Ac gene with subtilisin-like protease CDEP2 gene in acrystalliferous Bacillus thuringiensis by Red/ET homologous recombination. Curr Microbiol 59:386–392

    Article  CAS  Google Scholar 

  • Yamamoto T, Powell GK (1993) Bacillus thuringiensis crystal proteins: recent advances in understanding its insecticidal activity. In: Leo K (ed) Advanced engineered pesticides. Marcel Dekker, Inc., New York, pp 3–42

    Google Scholar 

  • Yari S, Inanlou DN, Yari F, Saleh M, Behrokh F, Akbarzadeh A (2002) Effects of protoplast fusion on delta-endotoxin production in Bacillus thuringiensis spp. (H14). Iran Biomed J 6:25–29

    CAS  Google Scholar 

  • Yoshisue H, Yoshida K, Sen K, Sakai H, Komano T (1992) Effects of Bacillus thuringiensis var. israelensis 20-kDa protein on production of the Bti 130-kDa crystal protein in Escherichia coli. Biosci Biotechnol Biochem 56:1429–1433

    Article  CAS  Google Scholar 

  • Yu J, Pang Y, Li J, Yu R, Tang M (1999) Construction of insecticidal engineered Bacillus thuringiensis using the transposon Tn917. Acta Sci Nat Uni Sunyasen 38:52–57

    CAS  Google Scholar 

  • Yu J, Pang Y, Tang M, Xie R, Tan L, Zeng S, Yuan M, Liu J (2001) Highly toxic and broad-spectrum insecticidal Bacillus thuringiensis engineered by using the transposon Tn917 and protoplast fusion. Curr Microbiol 43:112–119

    Article  CAS  Google Scholar 

  • Yue CY, Sun M, Chen SW, Yu ZN (2003) Construction of insecticidal recombinant Bacillus thuringiensis using an integrative vector. J Genet Genomics 30:737–742

    CAS  Google Scholar 

  • Yue C, Sun M, Yu Z (2005a) Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Biotechnol Bioeng 91:296–303

    Article  CAS  Google Scholar 

  • Yue C, Sun M, Yu Z (2005b) Improved production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional cry1C gene in its chromosome. Biotechnol Bioeng 92:1–7

    Article  CAS  Google Scholar 

  • Zhang GY, Zhang J, Peng Y, Zhao J, Chen C, Xu Y, Huang D (1995) Construction of genetically engineered strains of Pseudomonas fluorescens against plant pathogen and insect pests by electrophorating transformation. Sci Agric Sin 28:8–13

    CAS  Google Scholar 

  • Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett Appl Microbiol 42:109–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Chan Li for his practical helps. This work was supported by grants from the National Natural Science Foundation of China (item no. 31070111 and 30930004), and a grant from the Chinese National Program for High Technology Research and Development (item no. 2008AA02Z112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, L., Yu, Z. (2012). Genetically Modified Bacillus thuringiensis Biopesticides. In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_13

Download citation

Publish with us

Policies and ethics