Skip to main content

Recombination in Bacillus thuringiensis

  • Chapter
  • First Online:
Bacillus thuringiensis Biotechnology

Abstract

Recombination plays a critical role in maintaining gene diversification and genome stability. There are two types of recombination: the site specific recombination and the homologous recombination. In this chapter we present the genetic recombination in Bacillus thuringiensis. The first part describes the site specific recombination, including transposition by transposons and transduction by phage, in this bacterium and its exploitation in the construction of recombinant strains of B. thuringiensis improving their production as bioinsecticides and their insecticidal activities and B. thuringiensis mutagenesis. In the second part we are interested by the homologous recombination and its role in the construction of improved B. thuringiensis strains and in gene disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann HW, Azizbekyan RR, Emadi Konjin HP (1994) New Bacillus bacteriophage species. Arch Virol 135:333–344

    Article  CAS  Google Scholar 

  • Ackermann HW, Azizbekyan RR, Bernier RL (1995) Phage typing of Bacillus subtilis and Bacillus thuringiensis. Res Microbiol 146:643–657

    Article  CAS  Google Scholar 

  • Alikhanian SL, Ryabchenko NF, Bukanov NO, Sakanyan VA (1981) Transformation of Bacillus thuringiensis subsp. galleria Protoplasts by Plasmid pBC16. J Bacteriol 146:7–9

    CAS  Google Scholar 

  • Arnaud M, Chastanet A, Débarbouillé M (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70:6887–6891

    Article  CAS  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  Google Scholar 

  • Azizbekian KR, Kuzin AI, Dobrzhanskaia EO (1997) Restriction analysis of DNA from phages isolated from type strains of Bacillus thuringiensis. Mikrobiologiia 66:247–253 (Russian)

    CAS  Google Scholar 

  • Barsomian GD, Robillard NJ, Thorne CB (1984) Chromosomal mapping of Bacillus thuringiensis by transduction. J Bacteriol 157:746–750

    CAS  Google Scholar 

  • Baum JA (1994) Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol 176:2835–2845

    CAS  Google Scholar 

  • Baum JA, Kakefuda M, Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol 62:4367–4373

    CAS  Google Scholar 

  • Baum JA, Gilmer AJ, Light Mettus AM (1999) Multiple roles for TnpI recombinase in regulation of Tn5401 transposition in Bacillus thuringiensis. J Bacteriol 181:6271–6277

    CAS  Google Scholar 

  • Bone EJ, Ellar DJ (1989) Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett 58:171–178

    Article  CAS  Google Scholar 

  • Bourgouin C, Delecluse A, Ribier J, Klier A, Rapoport G (1988) A Bacillus thuringiensis subsp. israelensis gene encoding a 125-kilodalton larvicidal polypeptide is associated with inverted repeat sequences. J Bacteriol 170:3575–3583

    CAS  Google Scholar 

  • Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115

    Article  CAS  Google Scholar 

  • Chapman HM, Norris JR (1966) Four new bacteriophages of Bacillus thuringiensis. J Appl Bacteriol 29:529–535

    Article  CAS  Google Scholar 

  • Colasito DJ, Rogoff MH (1969) Characterization of temperate bacteriophages of Bacillus thuringiensis. J Gen Virol 5:275–281

    Article  CAS  Google Scholar 

  • Crawford IT, Greis KD, Parks L, Streips UN (1987) Facile autoplast generation and transformation in Bacillus thuringiensis subsp. kurstaki. J Bacteriol 169:5423–5428

    CAS  Google Scholar 

  • Delécluse A, Bourgouin C, Klier A, Rapoport G (1989) Nucleotide sequence and characterization of a new insertion element, IS240, from Bacillus thuringiensis israelensis. Plasmid 21:71–78

    Article  Google Scholar 

  • Delécluse A, Charles JF, Klier A, Rapoport G (1991) Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J Bacteriol 173:3374–3381

    Google Scholar 

  • Espinasse S, Gohar M, Lereclus D, Sanchis V (2002) An ABC transporter from Bacillus thuringiensis is essential for beta-exotoxin I production. J Bacteriol 184:5848–5854

    Article  CAS  Google Scholar 

  • Fischer HM, Lüthy P, Schweitzer S (1984) Introduction of plasmid pC194 into Bacillus thuringiensis by protoplast transformation and plasmid transfer. Arch Microbiol 139:213–217

    Article  CAS  Google Scholar 

  • Gaidelyte A, Cvirkaite-Krupovic V, Daugelavicius R, Bamford JK, Bamford DH (2006) The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol 188:5925–5934

    Article  CAS  Google Scholar 

  • Garsin DA, Urbach J, Huguet-Tapia JC, Peters JE, Ausubel FM (2004) Construction of an Enterococcus faecalis Tn917-mediated-gene-disruption library offers insight into Tn917 insertion patterns. J Bacteriol 186:7280–7289

    Article  CAS  Google Scholar 

  • Ghelardi E, Celandroni F, Salvetti S, Beecher DJ, Gominet M, Lereclus D, Wong AC, Senesi S (2002) Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J Bacteriol 184:6424–6433

    Article  CAS  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159

    Article  CAS  Google Scholar 

  • Hardies SC, Thomas JA, Serwer P (2007) Comparative genomics of Bacillus thuringiensis phage 0305j8-36: defining patterns of descent in a novel ancient phage lineage. Virol J 4:97

    Article  Google Scholar 

  • Hoffmaster AR, Koehler TM (1997) The anthrax toxin activator gene atxA is associated with CO2-enhanced non-toxin gene expression in Bacillus anthracis. Infect Immun 65:3091–3099

    CAS  Google Scholar 

  • Höfte H, de Greve H, Seurinck J, Jansens S, Mahillon J, Ampe C, Vandekerckhove J, Vanderbruggen H, van Montagu M, Zabeau M, Vaeck C (1986) Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis Berliner 1715. Eur J Biochem 161:273–280

    Article  Google Scholar 

  • Kalman S, Kiehne KL, Cooper N, Reynoso MS, Yamamoto T (1995) Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl Environ Microbiol 61:3063–3068

    CAS  Google Scholar 

  • Kamoun F, Fguira IB, Tounsi S, Abdelkefi-Mesrati L, Sanchis V, Lereclus D, Jaoua S (2009) Generation of Mini-Tn10 transposon insertion mutant library of Bacillus thuringiensis for the investigation of genes required for its bacteriocin production. FEMS Microbiol Lett 294:141–149

    Article  CAS  Google Scholar 

  • Kronstad JW, Whiteley HR (1984) Inverted repeat sequences flank a Bacillus thuringiensis crystal protein gene. J Bacteriol 160:95–102

    CAS  Google Scholar 

  • Kronstad JW, Whiteley HR (1986) Three classes of homologous Bacillus thuringiensis crystal-protein genes. Gene 43:29–40

    Article  CAS  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    CAS  Google Scholar 

  • Lereclus D, Ribier J, Klier A, Menou G, Lecadet MM (1984) A transposon-like structure related to the delta-endotoxin gene of Bacillus thuringiensis. EMBO J 3:2561–2567

    CAS  Google Scholar 

  • Lereclus D, Arantes O, Chaufaux J, Lecadet MM (1989) Transformation and expression of a cloned d-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 60:211–218

    CAS  Google Scholar 

  • Li M, Li M, Yin W, He J, Yu Z (2009) Two novel transposon delivery vectors based on mariner transposon for random mutagenesis of Bacillus thuringiensis. J Microbiol Methods 78:242–244

    Article  CAS  Google Scholar 

  • Liu J, Yang G, Shu C, Zhao C, Liu C, Song F, Zhou L, Ma J, Zhang J, Huang D (2010) Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects. Appl Microbiol Biotechnol 87:243–249

    Article  Google Scholar 

  • Mahillon J, Lereclus D (1988) Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate-resolution process. EMBO J 7:1515–1526

    CAS  Google Scholar 

  • Mahillon J, Chungjatupornchai W, Decock J, Dierickx S, Michiels F, Peferoen M, Joos H (1989) Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett 60:205–210

    Article  CAS  Google Scholar 

  • Mahillon J, Rezsöhazy R, Hallet B, Delcour J (1994) IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93:13–26

    Article  CAS  Google Scholar 

  • Malvar T, Baum JA (1994) Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J Bacteriol 176:4750–4753

    CAS  Google Scholar 

  • Martin PAW, Lahr JR, Dean DH (1981) Transformation of Bacillus thuringiensis protoplasts by plasmid deoxyribonucleic acid. J Bacteriol 145:980–983

    CAS  Google Scholar 

  • Masson L, Préfontaine G, Brousseau R (1989) Transformation of Bacillus thuringiensis vegetative cells by electroporation. FEMS Microbiol Lett 60:273–278

    Article  Google Scholar 

  • Monod C, Repoila F, Kutateladze M, Tetart F, Krisch HM (1997) The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J Mol Biol 267:237–249

    Article  CAS  Google Scholar 

  • Perlak FJ, Mendelsohn CL, Thorne CB (1979) Converting bacteriophage for sporulation and crystal formation in Bacillus thuringiensis. J Bacteriol 140:699–706

    CAS  Google Scholar 

  • Pribil PA, Haniford DB (2000) Substrate recognition and induced DNA deformation by transposase at the target-capture stage of Tn10 transposition. J Mol Biol 303:145–159

    Article  CAS  Google Scholar 

  • Pribil PA, Haniford DB (2003) Target DNA bending is an important specificity determinant in target site selection in Tn10 transposition. J Mol Biol 330:247–259

    Article  CAS  Google Scholar 

  • Rautenshtein RI, Moskalenko LN, Bespalova IA (1976) Ultrastructure of bacteriophages specific for Bacillus thuringiensis var. galleriae. Mikrobiologiia 45:690–694 (Russian)

    CAS  Google Scholar 

  • Rubinstein CP, Sanchez-Rivas C (1988) Production of protoplasts by autolytic induction in Bacillus thuringiensis: transformation and interspecific fusion. FEMS Microbiol Lett 52:67–72

    Article  Google Scholar 

  • Rubinstein CP, Sanchez-Rivas C (1989) Genetic manipulations in auto-induced protoplasts of Bacillus thuringiensis. Mem Inst Oswaldo Cruz, Rio de Janeiro 84:35–37

    Article  Google Scholar 

  • Ruhfel RE, Robillard NJ, Thorne CB (1984) Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis. J Bacteriol 157:708–711

    CAS  Google Scholar 

  • Salamitou S, Agaisse H, Lereclus D (1997) A genetic system that reports transient activation of genes in Bacillus. Gene 20:121–126

    Article  Google Scholar 

  • Salvetti S, Celandroni F, Ceragioli M, Senesi S, Ghelardi E (2009) Identification of non-flagellar genes involved in swarm cell differentiation using a Bacillus thuringiensis mini-Tn10 mutant library. Microbiology 155:912–921

    Article  CAS  Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1996) Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. J Biotechnol 48:81–96

    Article  CAS  Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1997) A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63:779–784

    CAS  Google Scholar 

  • Schurter W, Geiser M, Mathé D (1989) Efficient transformation of Bacillus thuringiensis and B. cereus via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene. Mol Gen Genet 218:177–181

    Article  CAS  Google Scholar 

  • Showsh SA, Andrews RE Jr (1992) Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid 28:213–224

    Article  CAS  Google Scholar 

  • Steggles JR, Wang J, Ellar DJ (2006) Discovery of Bacillus thuringiensis virulence genes using signature-tagged mutagenesis in an insect model of septicaemia. Curr Microbiol 53:303–310

    Article  CAS  Google Scholar 

  • Stromsten NJ, Benson SD, Burnett RM (2003) The Bacillus thuringiensis linear double-stranded DNA phage Bam35, which is highly similar to the Bacillus cereus linear plasmid pBClin15, has a prophage state. J Bacteriol 185:6985–6989

    Article  Google Scholar 

  • Thamthiankul S, Moar WJ, Miller ME, Panbangred W (2004) Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biotechnol 65:183–192

    Article  CAS  Google Scholar 

  • Thomas JA, Hardies SC, Rolando M, Hayes SJ, Lieman K, Carroll CA, Weintraub ST, Serwer P (2007) Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305f8-36. Virology 368:405–421

    Article  CAS  Google Scholar 

  • Thorne CB (1978) Transduction in Bacillus thuringiensis. Appl Environ Microbiol 35:1109–1115

    CAS  Google Scholar 

  • Tomich PK, An FY, Clewell DB (1980) Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis. J Bacteriol 141:1366–1374

    CAS  Google Scholar 

  • Verheust C, Jensen G, Mahillon J (2003) pGIL01, a linear tectiviral plasmid prophage originating from B. thuringiensis serovar israelensis. Microbiology 149:2083–2092

    Article  CAS  Google Scholar 

  • Verheust C, Fornelos N, Mahillon J (2004) The Bacillus thuringiensis phage GIL01 encodes two enzymes with peptidoglycan hydrolase activity. FEMS Microbiol Lett 237:289–295

    CAS  Google Scholar 

  • Verheust C, Fornelos N, Mahillon J (2005) GIL16, a new gram positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J Bacteriol 187:1966–1973

    Article  CAS  Google Scholar 

  • Vos JC, De Baere I, Plasterk RH (1996) Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev 10:755–761

    Article  CAS  Google Scholar 

  • Walter TM, Aronson AI (1991) Transduction of certain genes by an autonomously replicating Bacillus thuringiensis phage. Appl Environ Microbiol 57:1000–1005

    CAS  Google Scholar 

  • Wang J, Steggles JR, Ellar DJ (2008) Molecular characterization of virulence defects in Bacillus thuringiensis mutants. FEMS Microbiol Lett 280:127–134

    Article  CAS  Google Scholar 

  • Wilcks A, Jayaswal N, Lereclus D, Andrup L (1998) Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology 144:1263–1270

    Article  CAS  Google Scholar 

  • Yang H, Rong R, Song F, Sun C, Wei J, Zhang J, Huang D (2010) In vivo fluorescence observation of parasporal inclusion formation in Bacillus thuringiensis. Sci China Life Sci 53:1106–1111

    Article  CAS  Google Scholar 

  • Yoder PE, Nelson EL (1960) Bacteriophage for Bacillus thuringiensis berliner and Bacillus anthracis cohn. J Insect Pathol 2:198–200

    Google Scholar 

  • Yue C, Sun M, Yu Z (2005a) Improved production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional cry1C gene in its chromosome. Biotechnol Bioeng 92:1–7

    Article  CAS  Google Scholar 

  • Yue C, Sun M, Yu Z (2005b) Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Biotechnol Bioeng 91:296–303

    Article  CAS  Google Scholar 

  • Zeigler DR (1999) Bacillus genetic stock center catalog of strains, Seventh Edition, Part 2: Bacillus thuringiensis and Bacillus cereus, 7th edn. Bacillus Genetic Stock Center, Columbus, pp. 30. http://www.bgsc.org/Catalogs/Catpart2.pdf

  • Zvenigorodskii VI, Izakson IS, Kapitonova ON (1975) Identification of bacteriophages and study of the properties of phage-resistant mutants of Bacillus thuringiensis var. galleriae. Nauchnye Doki Vyss Shkoly Biol Nauki 5:92–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slim Tounsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abdelkefi-Mesrati, L., Tounsi, S. (2012). Recombination in Bacillus thuringiensis . In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_11

Download citation

Publish with us

Policies and ethics