Skip to main content

Discovery and Description of Bacillus thuringiensis

  • Chapter
  • First Online:
Bacillus thuringiensis Biotechnology

Abstract

The use of biopesticides, as a component of integrated pest management (IPM), has been gaining acceptance over the world. An entomopathogenic organism should be highly specific and effective against the target pest and should demonstrate the potential to be successfully processed by continuous production technology. Bacillus thuringiensis (Bt) was discovered as a soil bacterium, which fulfills all these requirements and due to it has been used as a biopesticide in agriculture, forestry and mosquito control. Studies of the basic biology of Bt have shown that the insecticidal activity of Bt is due to the presence of parasporal protein inclusion bodies, also called crystals, produced during sporulation that determines its activity for insect species belonging to different orders, which act like a stomach poison causing larval death. Environmentally safe-insect control strategies based on Bt and their insecticidal crystal proteins are going to increase in the future, especially with the wide adoption of transgenic crops. In this chapter, I have summarized the discovery and the description of Bt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison JA (1993) Persistence and non-target effects of Bacillus thuringiensis in soil: a review. Can J Forest Res 23:2329–2342

    Article  Google Scholar 

  • Aizawa K, Iida S (1963) Nucleic acids extracted from the virus polyhedra of the silkworm, Bombyx mori (Linnaeus). J Insect Path 5:344–348

    CAS  Google Scholar 

  • Angus TA (1954) A bacterial toxin paralyzing silkworm larvae. Nature 173:545–546

    Article  CAS  Google Scholar 

  • Aoki K, Chigasaki Y (1916) Über die Pathogenität der sog. Sottobacillen (Ishiwata) bei Seidenraupen. Bull Imp Sericult Expt Sta 1:97–139

    Google Scholar 

  • Aronson A, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    CAS  Google Scholar 

  • Beegle CC, Yamamoto T (1992) Invitation paper (C.P. Alexander Fund): history of Bacillus thuringiensis Berliner research and development. Can Entomol 124:587–604

    Article  Google Scholar 

  • Berliner E (1915) Ueber die schlaffsucht der Ephestia kuhniella und Bac. thuringiensis n. sp. Z Angew Entomol 2:21–56

    Google Scholar 

  • Bravo A, Sanchez J, Kouskovra T, Crickmore N (2002) N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin. J Biol Chem 27:23985–23990

    Article  Google Scholar 

  • Bravo A, Gomez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill SS, Soberón M (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochem Biophys Acta 1667:38–46

    Article  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  Google Scholar 

  • Broderick NA, Goodman RM, Raffa KF, Handelsman J (2000) Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: lymantriidae). Environ Entomol 29:101–107

    Article  CAS  Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1Aa and its mechanism of membrane damage: data and hypothesis. Appl Environ Microbiol 69:2415–2422

    Article  CAS  Google Scholar 

  • Cerón JA (2001) Productos comerciales nativos y recombinantes a base de Bacillus thuringiensis. In: Caballero P, Ferré J (eds) Bioinsecticidas: fundamentos y aplicaciones de Bacillus thuringiensis en el control integrado de plagas. Phytoma-España, Valencia, pp 153–168

    Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  Google Scholar 

  • de Barjac H, Lemille F (1970) Presence of flagellar antigenic subfactors in Serotype 3 of Bacillus thuringiensis. J Invertebr Pathol 15:139–140

    Article  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore forming entomopathogenic bacteria. Ann Rev Genet 37:409–420

    Article  CAS  Google Scholar 

  • Dulmage HT (1970) Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J Invertebr Pathol 15:232–239

    Article  Google Scholar 

  • Ely S (1993) The engineering of plants to express Bacillus thuringiensis delta-endotoxins. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an experimental biopesticide: theory and practice. Wiley, Chichester, pp 105–124

    Google Scholar 

  • Espinasse S, Gohar M, Lereclus D, Sanchis V (2002) An ABC transporter from Bacillus thuringiensis is essential for β-exotoxin I production. J Bacteriol 184:5848–5854

    Article  CAS  Google Scholar 

  • Espinasse S, Gohar M, Lereclus D, Sanchis V (2004) An extracytoplasmic-function sigma factor is involved in a pathway controlling β-Exotoxin I production in Bacillus thuringiensis subsp. thuringiensis Strain 407–1. J Bacteriol 186:3108–3116

    Article  CAS  Google Scholar 

  • Federici BA (1999) Bacillus thuringiensis. In: Bellows TS, Gordh G, Fisher TW (eds) Handbook of biological control. Academic Press, San Diego, pp 517–548

    Chapter  Google Scholar 

  • Federici BA, Park H-W, Bideshi DK (2010) Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control. Open Toxinol J 3:83–100

    Google Scholar 

  • Fisher R, Rosener L (1959) Toxicology of the microbial insecticide, Thuricide. Agric Food Chem 7:686–688

    Article  CAS  Google Scholar 

  • Frutos R, Rang C, Royer M (1999) Managing insect resistance to plants producing Bacillus thuringiensis toxins. Crit Rev Biotechnol 19:227–276

    Article  CAS  Google Scholar 

  • Goldberg LJ (1979) Mosquito larvae control using a bacterial larvicide. US Patent 4(166):112

    Google Scholar 

  • Goldberg LJ, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univeritattus, Aedes aegypti, and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Griffiths JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925

    Article  Google Scholar 

  • Guillet PD, Kurtak C, Philippon B, Meyer R (1990) Use of Bacillus thuringiensis israelensis for onchocerciasis control in West Africa. In: Barjac H de, Sutherland D (eds) Bacterial control of mosquitoes and blackflies; biochemistry, genetics, and applications of Bacillus thuringiensis and Bacillus sphaericus. Rutgers Univ Press, New Brunswick, pp 187–201

    Google Scholar 

  • Hannay CL (1953) Crystalline inclusions in aerobic sporeforming bacteria. Nature 172:1004

    Article  CAS  Google Scholar 

  • Hannay CL, Fitz-James PC (1955) The proteins crystals of Bacillus thuringiensis Berliner. Can J Microbiol 1:694–710

    Article  CAS  Google Scholar 

  • Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  Google Scholar 

  • Husz B (1928) Bacillus thuringiensis Berl. A bacterium pathogenic to corn borer larvae. Int Corn Borer Invest Sci Rep 1:191–193

    Google Scholar 

  • Isakova NP (1958) A new variety of bacterium of the “cereus” type pathogenic for insects. Dokl Akad Sci Nauk Selsk 3:26–27

    Google Scholar 

  • Ishiwata S (1901) On a new type of severe flacherie (sotto disease) (original in Japanese). Dainihon Sansi Kaiho 114:1–5

    Google Scholar 

  • Ishiwata S (1905a) Concerning ‘Sotto-Kin’ a bacillus of a disease of the silkworm. Rept Assoc Seric Japan 160:1–8

    Google Scholar 

  • Ishiwata S (1905b) About “Sottokin,” a bacillus of a disease of the silk-worm. Dainihon Sanshi Kaiho (Rept Assoc Seric Japan) 161:1–5

    Google Scholar 

  • Jurat-Fuentes JL, Adang MJ (2004) Characterization of a Cry1Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem 271:3127–3135

    Article  CAS  Google Scholar 

  • Krieg A, Huger A, Lagenbruch G, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis: a new pathotypes effective against larvae of Coleoptera. Z Angew Entomol 96:500–508

    Article  Google Scholar 

  • Kurstak E (1962) Donnees sur l’epizootie bacterienne naturelle provoguee par un Bacillus du type Bacillus thuringiensis sur Ephestia kuhniella Zeller. Entomophaga Mem Hors Ser 2:245–247

    Google Scholar 

  • Lecadet M-M, Frachon E, Dumanoir VC, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Article  CAS  Google Scholar 

  • Lee MK, You TH, Young BA, Cotrill JA, Valaitis AP, Dean DH (1996) Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 62:2845–2849

    CAS  Google Scholar 

  • Lee MK, Walters FS, Hart H, Palekar N, Chen J-S (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl Environ Microbiol 69:4648–4657

    Article  CAS  Google Scholar 

  • Li J, Koni PA, Ellar DJ (1996) Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis ssp. kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152

    Article  CAS  Google Scholar 

  • Liu YB, Tabashnik BE (1997) Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc R Soc Lond B 264:605–610

    Article  Google Scholar 

  • Margalith Y, Ben-Dov E (2000) Biological control by Bacillus thuringiensis subp. israelensis. In: Rechcigl JE, Rechcigl NA (eds) Insect pest management, techniques for environmental protection. Lewis Publishers, Boca Raton

    Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants geneticallymodified for insect resistance on non-target organisms. Annu Rev Entomol 50:271–292

    Article  Google Scholar 

  • Petras SF, Casida LE Jr (1985) Survival of Bacillus thuringiensis spores in soil. Appl Environ Microbiol 50:1496–1501

    CAS  Google Scholar 

  • Promdonkoy B, Ellar DJ (2000) Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis. Biochem J 350:275–282

    Article  CAS  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group organisms. FEMS Microbiol Rev 29:303–310

    CAS  Google Scholar 

  • Rosas-García NM (2009) Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative. Recent Pat Biotechnol 3:28–36

    Article  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  Google Scholar 

  • Steinhaus EA (1951) Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the alfalfa caterpillar. Hilgardia 20:359–381

    Google Scholar 

  • Steinhaus EA (1956) Potentialities for microbial control of insects. Agric Food Chem 4:676–680

    Article  Google Scholar 

  • Steinhaus EA, Jerrel EA (1954) Further observations on Bacillus thuringiensis Berliner and other sporeforming bacteria. Hilgardia 23:1–23

    Google Scholar 

  • Talalaev EV (1956) Septicemia of the caterpillars of the Siberian silkworm. Mikrobiologiya 25:99

    CAS  Google Scholar 

  • van der Geest LPS van der, Laan PA (1971) Sources of special materials. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic Press, NY, pp 741–749

    Google Scholar 

  • van der Laan PA (1967) Insect pathology and microbial control. In: van der Laan PA (ed) Proc Intern Colloq on Insect Path & Microbial Contr. North-Holland Publishers Co., Amsterdam, pp 252–286

    Google Scholar 

  • Van Frankenhuyzen K (1993) The challenge of Bacillus thuringiensis. In: Entwistle PE, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 1–35

    Google Scholar 

  • Vouk V, Klas Z (1931) Conditions influencing the growth of the insecticidal fungus Metarrhizium anisopliae (Metsch.) Sor. Int Corn Borer Invest Sci Rept 4:24–45

    Google Scholar 

  • Weiser J (1986) Impact of Bacillus thuringiensis on applied entomology in Eastern Europe and in the Soviet Union. In: Krieg A, Huger AM (eds) Mitt. Biol. Bundesanst. Land Forstwirtsch Berl Dahlem, vol 233. Paul Parey, Berlin, pp 37–49

    Google Scholar 

  • Wirth MC, Park H-W, Walton WE, Federici BA (2005) Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito, Culex quinquefasciatus. Appl Environ Microbiol 71:185–189

    Article  CAS  Google Scholar 

  • Wu D, Johnson JJ, Federici BA (1994) Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from clones genes. Mol Microbiol 13:965–972

    Article  CAS  Google Scholar 

  • Zakharyan RA, Agabalyan AS, Chil-Akopyan LA, Gasparyan NS, Bakunts KA, Tatevosyan PE, Afrikyan EK (1976) About the possibility of extrachromosomal DNA in creation of the entomocidal endotoxin of B. thuringiensis. Dokl Akad Nauk Arrn SSR 63:42–47 [in Russian.]

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estibaliz Sansinenea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sansinenea, E. (2012). Discovery and Description of Bacillus thuringiensis . In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_1

Download citation

Publish with us

Policies and ethics