Skip to main content

Life Explained by Heat Engines

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

Mitochondria are in essence fuel cells that use organics as reductant and oxygen as oxidant. In engineering, increasing attention is being given to the replacement of the internal combustion engine by the fuel cell. According to the Thermosynthesis theory, a similar replacement of heat engines by fuel cells has occurred in biological systems in the distant past. Moreover, the early progenitors of biosystems such as (1) ATP Synthase; (2) biomembranes; (3) bacterial flagella, muscle, and collagen; and (4) the nerve have as engineering counterparts (1) heat engines that work on thermal desorption, (2) electrical capacitors containing a dielectric with a temperature-dependent polarization, (3) polymers such as rubber that contract as a result of a temperature increase, and (4) thermocouples. These biological progenitors ran by convection in volcanic hot springs or by oscillation in the thermal gradient above submarine hydrothermal vents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agar JN (1963) Thermogalvanic cells. Adv Electrochem Electrochem Eng 3:31–121

    CAS  Google Scholar 

  • Aristov YI, Vasiliev LL, Nakoryakov VE (2008) Chemical and sorption heat engines: state of the art and development prospects in the Russian Federation and Republic of Belarus. J Eng Phys Thermophys 81:17–47

    Article  Google Scholar 

  • Atkins PW (1990) Physical chemistry, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Barnett MW, Larkman PM (2007) The action potential. Pract Neurol 7:192–197

    PubMed  Google Scholar 

  • Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345

    Article  CAS  Google Scholar 

  • Bekker A, Holland HD, Wang P-L, Rumble D, Stein HJ, Hannah JL, Coerzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  PubMed  CAS  Google Scholar 

  • Beklemishev WN, Maclennan JM, Kabata Z (1969) Principles of comparative anatomy of invertebrates I: promorphology, II: organology. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Black S (1970) Pre-cell evolution and the origin of enzymes. Nature 226:754–755

    Article  PubMed  CAS  Google Scholar 

  • Bohm D (2009) Some remarks on the notion of order. In: Waddington CH (ed) Sketching theoretical biology: towards a theoretical biology, vol 2. Transaction Publishers, New Brunswick, pp 18–40

    Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase—some probabilities and possibilities. Biochim Biophys Acta 1140:215–250

    Article  PubMed  CAS  Google Scholar 

  • Budin I, Bruckner RJ, Szostak JW (2009) Formation of protocell-like vesicles in a thermal diffusion column. J Am Chem Soc 131:9628–9629

    Article  PubMed  CAS  Google Scholar 

  • Calvin M (1969) Chemical evolution. Oxford University Press, Oxford

    Google Scholar 

  • Cardwell DSL (1971) From Watt to Clausius. Iowa State University Press, Iowa City

    Google Scholar 

  • Carson EM, Watson JR (2002) Undergraduate students’ understanding of entropy and Gibbs free energy. Univ Chem Educ 6:4–12

    CAS  Google Scholar 

  • Clark RB (1964) Dynamics in metazoan evolution. The origin of the Coelom and segments, Clarendon Press, Oxford

    Google Scholar 

  • de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. NHPC, Amsterdam

    Google Scholar 

  • De Meis L (1989) Role of water in the energy of hydrolysis of phosphate compounds—energy transduction in biological membranes. Biochim Biophys Acta 973:333–349

    Article  PubMed  Google Scholar 

  • Dewel RA (2000) Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74

    Article  PubMed  CAS  Google Scholar 

  • Dewel RA, Dewel WC, McKinney FK (2001) Diversification of the Metazoa: ediacarans, colonies, and the origin of eumetazoan complexity by nested modularity. Hist Biol 15:193–218

    Article  Google Scholar 

  • Dunn C (2009) Siphonophores. Curr Biol 19:R233–R234

    Article  PubMed  CAS  Google Scholar 

  • Duysens LNM, Amesz J, Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190:510–511

    Article  PubMed  CAS  Google Scholar 

  • Dyson F (1985) Origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Einstein A (1910) Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann Phys 33:1275–1298

    Article  CAS  Google Scholar 

  • Fast JD (1968) Entropy, 2nd edn. Centen, Hilversum

    Google Scholar 

  • Florkin M (1972) From forces-of-life to bioenergetics. Compre Biochem 30:215–249

    Google Scholar 

  • Glazebrook RW, Thomas A (1982) Solar energy conversion via a photodielectric effect. J Chem Soc Faraday Trans II 78:2053–2065

    Article  CAS  Google Scholar 

  • Guthrie WKC (1957) In the beginning. Some Greek views on the origins of life and the early state of man. Methuen, London

    Google Scholar 

  • Haase R (1963) Thermodynamik der irreversiblen Prozesse. Dietrich Steinkopff, Darmstadt

    Google Scholar 

  • Haydon DA, Hladky SB (1972) Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys 5:187–282

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic Snowball Earth. Science 281:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Hu R, Cola BA, Haram N, Barisci JN, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, DelaCruz ME, Ferraris JP, Zakhidov AA, Baughman RH (2010) Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett 10:838–846

    Article  PubMed  CAS  Google Scholar 

  • Jammer M (1973) Entropy. In: Wiener PP (ed) Dictionary of the history of ideas, vol 2. Scribner, New York, pp 112–120

    Google Scholar 

  • Johnston WJ, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Jones D (1997) The dark is light enough. Nature 385:401

    Google Scholar 

  • Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc Lond B Biol Sci 361:917–929

    Article  PubMed  CAS  Google Scholar 

  • Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci USA 94:6600–6605

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Watanabe Y (2001) Oceanic anoxia at the Precambrian-Cambrian boundary. Geology 29:995–998

    Article  CAS  Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the Snowball Earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52

    Google Scholar 

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Article  PubMed  CAS  Google Scholar 

  • Kunze J, Stimming U (2009) Electrochemical versus heat-engine energy technology: a tribute to Wilhelm Ostwalds’s visionary statements. Angew Chem Int Ed 48:9230–9237

    Article  CAS  Google Scholar 

  • Lambert FL (2002) Disorder—a cracked crutch for supporting entropy discussions. J Chem Educ 79:187–192

    Article  CAS  Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210

    Article  CAS  Google Scholar 

  • Meert JG, Lieberman BS (2008) The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res 14:5–21

    Article  Google Scholar 

  • Mitchell P (1979a) Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1979b) Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem 95:1–20

    Article  PubMed  CAS  Google Scholar 

  • Moore WJ (1962) Physical chemistry, 4th edn. Longmans, London

    Google Scholar 

  • Mullen JG, Look GW, Konkel J (1975) Thermodynamics of a simple rubber-band heat engine. Am J Phys 43(4):349–353

    Article  Google Scholar 

  • Muller AWJ (1985) Thermosynthesis by biomembranes: energy gain from cyclic temperature changes. J Theor Biol 115:429–453

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (1993) A mechanism for thermosynthesis based on a thermotropic phase transition in an asymmetric biomembrane. Physiol Chem Phys Med NMR 25:95–111

    CAS  Google Scholar 

  • Muller AWJ (1995a) Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion. Prog Biophys Mol Biol 63:193–231

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (1995b) Photosystem 0: a postulated primitive photosystem that generates ATP in fluctuating light. Available on the internet. http://dare.uva.nl/document/175059

  • Muller AWJ (1996) Life on Mars? Nature 380:100

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (1998) Thermosynthesis: where biology meets thermodynamics. In: Lugowski W, Matsuno K (eds) Uroboros, or biology between mythology and philosophy. Arboretum, Wroclaw, pp 139–167

    Google Scholar 

  • Muller AWJ (2001) The thermosynthesis model for the origin of life: implications for Solar System exploration. Marsbugs 8(15):3–6

    Google Scholar 

  • Muller AWJ (2003) Finding extraterrestrial organisms living on thermosynthesis. Astrobiology 3:555–564

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (2005) Thermosynthesis as energy source for the RNA world: a model for the bioenergetics of the origin of life. Biosystems 82:93–102

    Article  PubMed  CAS  Google Scholar 

  • Muller AWJ (2009) Emergence of animals from heat engines—part 1. Before the Snowball Earths. Entropy 11:463–512

    Article  CAS  Google Scholar 

  • Muller AWJ, Schulze-Makuch D (2006) Sorption heat engines: simple inanimate negative entropy generators. Physica A 362:369–381

    Article  Google Scholar 

  • Narbonne GM (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33:421–442

    Article  CAS  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  • Ogawa M (2008) Mantle convection: a review. Fluid Dyn Res 40:379–398

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212

    Article  CAS  Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11

    Article  Google Scholar 

  • Quickenden TI, Mua Y (1995) A review of power-generation in aqueous thermogalvanic cells. J Electrochem Soc 142:3985–3994

    Article  CAS  Google Scholar 

  • Reed RC (2006) The superalloys. Fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935

    Article  Google Scholar 

  • Schäfer G, Purschke W, Schmidt CL (1996) On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 18:173–188

    Article  PubMed  Google Scholar 

  • Simon MA (1971) The matter of life. Philosophical problems of biology. Yale University Press, New Haven, p 167

    Google Scholar 

  • Sklar AA (2005) A numerical investigation of a thermodielectric power generation system. Thesis, Georgia Institute of Technology, Atlanta, Georgia

    Google Scholar 

  • Stanley HE, Kumar P, Xu L, Yan Z, Mazza MG, Buldyrev SV, Chen S-H, Mallamace F (2007) The puzzling unsolved mysteries of liquid water: some recent progress. Physica A 386:729–743

    Article  CAS  Google Scholar 

  • Stern RJ, Avigad D, Miller NR, Beyth M (2006) Evidence of the Snowball Earth hypothesis in the Arabian-Nubian shield and the East African Orogen. J Afr Earth Sci 44:1–20

    Article  Google Scholar 

  • Strickberger MW (2000) Evolution, 3rd edn. Jones and Bartlett, Sudbury, p 337

    Google Scholar 

  • Tanford C (1973) The hydrophobic effect. Wiley, New York

    Google Scholar 

  • Tollefson J (2010) Fuel of the future? Nature 464:1262–1264

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1992) Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57:23–57

    Article  PubMed  CAS  Google Scholar 

  • Valentine JW (2004) On the origin of phyla. University of Chicago Press, Chicago

    Google Scholar 

  • Wekjira JF (2001) The VT1 shape memory alloy heat engine design. Thesis, Virginia Polytechnic Institute, Blacksburg, VA

    Google Scholar 

  • Wiegand WB, Snyder JW (1934) The rubber pendulum, the Joule effect, and the dynamic stress strain curve. Inst Rubber Ind Trans Proc 10:234–262

    CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Wolter Kaper, Steph Menken, and Roel van Driel are thanked for their comments on the manuscript; Kevin Crosby is thanked for extensive proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthonie W. J. Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Muller, A.W.J. (2012). Life Explained by Heat Engines. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_19

Download citation

Publish with us

Policies and ethics