Skip to main content

Moving “Far from Equilibrium” in a Prebiotic Environment: The Role of Maxwell’s Demon in Life Origin

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

Can we falsify the following null hypothesis?

A kinetic energy potential cannot be generated by Maxwell’s Demon from an ideal gas equilibrium without purposeful choices of when to open and close the partition’s trap door.

If we can falsify this null hypothesis with an observable naturalistic mechanism, we have moved a long way toward modeling the spontaneous molecular evolution of life. Falsification is essential to discount teleology. But life requires a particular version of “far from equilibrium” that explains formal organization, not just physicodynamic self-ordering as seen in Prigogine’s dissipative structures. Life is controlled and regulated, not just constrained. Life follows arbitrary rules of behavior, not just invariant physical laws. To explain life’s origin and regulation naturalistically, we must first explain the more fundamental question, “How can hotter, faster-moving, ideal gas molecules be dichotomized from cooler, slower-moving, ideal gas molecules without the Demon’s choice contingency operating the trap door?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel DL (2000) Is life reducible to complexity? Paper presented at the Workshop on life: a satellite meeting before the Millennial World Meeting of University Professors, Modena, Italy

    Google Scholar 

  • Abel DL (2002) Is life reducible to complexity? In: Palyi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 57–72

    Google Scholar 

  • Abel DL (2006) Life origin: the role of complexity at the edge of chaos. Paper presented at the Washington Science 2006, Headquarters of the National Science Foundation, Arlington, VA

    Google Scholar 

  • Abel DL (2007) Complexity, self-organization, and emergence at the edge of chaos in life-origin models. J Wash Acad Sci 93(4):1–20

    Google Scholar 

  • Abel DL (2008a) The capabilities of chaos and complexity. Paper presented at the Society for Chaos Theory: Society for Complexity in Psychology and the Life Sciences, International Conference at Virginia Commonwealth University, Richmond, VA

    Google Scholar 

  • Abel DL (2008b) ‘The Cybernetic Cut’: progressing from description to prescription in systems theory. Open Cybern Syst J 2:234–244, Open access

    Google Scholar 

  • Abel DL (2008c) The Cybernetic Cut (Scirus Topic Page). http://www.scitopics.com/The_Cybernetic_Cut.html. Last accessed Jan 2012

  • Abel DL (2009a) The biosemiosis of prescriptive information. Semiotica 2009(174):1–19

    Google Scholar 

  • Abel DL (2009b) The capabilities of chaos and complexity. Int J Mol Sci 10(1 Special Issue on Life Origin):247–291, Open access at http://mdpi.com/1422~0067/1410/1421/1247

    PubMed  CAS  Google Scholar 

  • Abel DL (2009c) The GS (Genetic Selection) Principle. Front Biosci 14(January 1):2959–2969, Open access at http://www.bioscience.org/2009/v2914/af/3426/fulltext.htm

    PubMed  CAS  Google Scholar 

  • Abel DL (2009d) The GS (Genetic Selection) Principle (Scirus Topic Page). http://www.scitopics.com/The_Genetic_Selection_GS_Principle.html. Last accessed Jan 2012

  • Abel DL (2009e) The Universal Plausibility Metric (UPM) and Principle (UPP). Theor Biol Med Model 6(1):27

    PubMed  Google Scholar 

  • Abel DL (2010a) Constraints vs. controls. Open Cybern Syst J 4:14–27

    Google Scholar 

  • Abel DL (2010b) The Universal Plausibility Metric (UPM) and Principle (UPP) [Scirus SciTopic Page], Jan 2012. http://scitopics.com/The_Universal_Plausbility_Metric_UPM_and_Principle_UPP.html

  • Abel DL, Trevors JT (2005) Three subsets of sequence complexity and their relevance to biopolymeric information. Theor Biol Med Model 2, Open access at http://www.tbiomed.com/content/2/1/29

  • Abel DL, Trevors JT (2006a) More than metaphor: genomes are objective sign systems. J BioSemiotics 1(2):253–267

    Google Scholar 

  • Abel DL, Trevors JT (2006b) Self-organization vs. self-ordering events in life-origin models. Phys Life Rev 3:211–228

    Google Scholar 

  • Abel DL, Trevors JT (2007) More than metaphor: genomes are objective sign systems. In: Barbieri M (ed) BioSemiotic research trends. Nova, New York, pp 1–15

    Google Scholar 

  • Agrawal H (2002) Extreme self-organization in networks constructed from gene expression data. Phys Rev Lett 89(26):268702

    PubMed  Google Scholar 

  • Axe DD (2004) Estimating the prevalence of protein sequences adopting functional enzyme folds. J Mol Biol 341(5):1295–1315

    PubMed  CAS  Google Scholar 

  • Barab SA, Cherkes-Julkowski M, Swenson R, Garrett S, Shaw RE, Young M (1999) Principles of self-organization: learning as participation in autocatakinetic systems. J Learn Sci 8(3/4):349–390

    Google Scholar 

  • Barbieri M (2004) Biology with information and meaning. Hist Philos Life Sci 25(2 (June)):243–254

    Google Scholar 

  • Barham J (1996) A dynamical model of the meaning of information. Biosystems 38(2–3):235–241

    PubMed  CAS  Google Scholar 

  • Bar-Hillel Y, Carnap R (1953) Semantic information. Br J Philos Sci 4:147–157

    Google Scholar 

  • Barwise J, Etchemendy J (1990) Information, infons, and inference. In: Cooper R, Mukai K, Perry J (eds) Situation theory and its applications, vol 1. CSLI, Stanford, pp 33–78

    Google Scholar 

  • Barwise J, Perry J (1983) Situations and attitudes. MIT Press, Cambridge

    Google Scholar 

  • Batten M, Salthe S, Boschetti F (1991) Visions of evolution: self-organization proposes what natural selection disposes. Biol Theor 3(1):17–29

    Google Scholar 

  • Bedau MA (2003) Artificial life: organization, adaptation and complexity from the bottom up. Trends Cogn Sci 7(11):505–512

    PubMed  Google Scholar 

  • Boniolo G (2003) Biology without information. Hist Philos Life Sci 25:255–273

    PubMed  Google Scholar 

  • Cairns-Smith AG (1966) The origin of life and the nature of the primitive gene. J Theor Biol 10(1):53–88

    PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1990) Seven clues to the origin of life. Canto ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Comazine S, Deneubourg J-L, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization is biological systems. Princeton University Press, Princeton

    Google Scholar 

  • Dalenoort GJ (1989) The paradigm of self-organization: current trends in self-organization. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Deacon TW (2006a) Emergence: the hole at the wheel’s hub. In: Clayton P, Davies PCW (eds) Re-emergence of emergence. Oxford University Press, Oxford

    Google Scholar 

  • Deacon TW (2006b) Reciprocal linkage between self-organizing processes is sufficient for self-reproduction and evolvability. Biol Theor 1(2):136–149

    Google Scholar 

  • Deacon TW (2006c) Reciprocal linkage between self-organizing processes is sufficient for self-reproduction and evolvability. Biol Theor 1(2):136–149

    Google Scholar 

  • Deacon TW (2010) 8: What’s missing from theories of information? In: Davies P, Gregersen NH (eds) Information and the nature of reality: from physics to metaphysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Deacon T, Sherman J (2008) The pattern which connects pleroma to creatura: the autocell bridge from physics to life. In: Hoffmeyer J (ed) A legacy for living systems: Gregory Bateson as precursor to biosemiotics. Springer, Dordrecht

    Google Scholar 

  • Demetrius L (1984) Self-organization in macromolecular systems: the notion of adaptive value. PNAS 81(19):6068–6072. doi:10.1073/pnas.81.19.6068

    PubMed  CAS  Google Scholar 

  • Devlin K (1991) Logic and information. Cambridge University Press, New York

    Google Scholar 

  • Dretske F (1981) Knowledge and the flow of information. MIT Press, Cambridge

    Google Scholar 

  • Dretske F (1995) Naturalizing the mind. MIT Press, Cambridge

    Google Scholar 

  • Eigen M (1971a) Molecular self-organization and the early stages of evolution. Experientia 27(11):149–212

    PubMed  CAS  Google Scholar 

  • Eigen M (1971b) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523 (In German)

    PubMed  CAS  Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 64(11):541–565

    PubMed  CAS  Google Scholar 

  • Eigen M, Schuster P (1982) Stages of emerging life – five principles of early organization. J Mol Evol 19(1):47–61

    PubMed  CAS  Google Scholar 

  • Eigen M, Winkler R (1992) Steps towards life: a perspective on evolution. Oxford University Press, Oxford/New York

    Google Scholar 

  • Epstein IR, Eigen M (1979) Selection and self-organization of self-reproducing macromolecules under the constraint of constant flux. Biophys Chem 10(2):153–160

    PubMed  CAS  Google Scholar 

  • Feltz B, Crommelinck M, Goujon P (2006) Self-organization and emergence in life sciences. Springer, Dordrecht

    Google Scholar 

  • Gabora L (2006) Self-other organization: why early life did not evolve through natural selection. J Theor Biol 241(3):443–450

    PubMed  Google Scholar 

  • Galimov EM (2009) Concept of sustained ordering and ATP-related mechanism of life’s origin. Int J Mol Sci 10:2019–2030

    PubMed  CAS  Google Scholar 

  • Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units: the chemotons. Biosystems 7(1):15–21

    PubMed  Google Scholar 

  • Gánti T (1980) On the organizational basis of the evolution. Acta Biol 31(4):449–459

    Google Scholar 

  • Gershenson C (2007). Design and control of self-organizing systems. Ph.D., Vrije Universiteit Brussel, Brussels. Retrieved from http://complexity.vub.ac.be/~carlos/thesis.pdf

  • Godfrey-Smith P (2003) Genes do not encode information for phenotypic traits. In: Hitchcock C (ed) Contemporary debates in philosophy of science. Blackwell, London, pp 275–289

    Google Scholar 

  • Goldbeter A, Decroly O (1983) Temporal self-organization in biochemical systems: periodic behavior vs. chaos. Am J Physiol 245(4):R478–483

    PubMed  CAS  Google Scholar 

  • Griffiths PE (2001) Genetic information: a metaphor in search of a theory. Philos Sci 68:394–412

    Google Scholar 

  • Harold FM (2005) Molecules into cells: specifying spatial architecture. Microbiol Mol Biol Rev 69(4):544–564

    PubMed  CAS  Google Scholar 

  • Ito K, Gunji YP (1994) Self-organisation of living systems towards criticality at the edge of chaos. Biosystems 33(1):17–24

    PubMed  CAS  Google Scholar 

  • Jacob F (1974) The logic of living systems – a history of heredity. Allen Lane, London

    Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Kauffman S (1995) At home in the universe: the search for the laws of self-organization and complexity. Oxford University Press, New York

    Google Scholar 

  • Kieu TD (2004) The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys Rev Lett 93(14):140403

    PubMed  Google Scholar 

  • Kuhn H (1972) Self-organization of molecular systems and evolution of the genetic apparatus. Angewandte Chemie Int Edn 11(9):798–820

    CAS  Google Scholar 

  • Kuhn H (1976) Model consideration for the origin of life. Environmental structure as stimulus for the evolution of chemical systems. Naturwissenschaften 63(2):68–80

    PubMed  CAS  Google Scholar 

  • Küppers B (1979) Towards an experimental analysis of molecular self-organization and precellular Darwinian evolution. Naturwissenschaften 66(5):228–243

    PubMed  Google Scholar 

  • Kurakin A (2005) Self-organization vs Watchmaker: stochastic gene expression and cell differentiation. Dev Genes Evol 215(1):46–52

    PubMed  Google Scholar 

  • Lehn J-M (2002a) Toward complex matter: supramolecular chemistry and self-organization. PNAS, 072065599

    Google Scholar 

  • Lehn J-M (2002b) Toward self-organization and complex matter. Science 295(5564):2400–2403

    PubMed  CAS  Google Scholar 

  • Lifson S (1987) Chemical selection, diversity, teleonomy and the second law of thermodynamics. Reflections on Eigen’s theory of self-organization of matter. Biophys Chem 26(2–3):303–311

    PubMed  CAS  Google Scholar 

  • Lozneanu E, Sanduloviciu M (2009) Self-organization scenario grounded on new experimental results. Chaos, Solitons and Fractals 40(4):1845–1857

    Google Scholar 

  • Luisi PL (2003) Autopoiesis: a review and a reappraisal. Naturwissenschaften 90(2):49–59

    PubMed  CAS  Google Scholar 

  • Maxwell JC (1871) Theory of heat. Dover, New York, reprinted (2001)

    Google Scholar 

  • Moreno A, Ruiz-Mirazo K (2009) The problem of the emergence of functional diversity in prebiotic evolution. Biol Philos 24(5):585–605

    Google Scholar 

  • Morowitz HJ (1977) Perspectives on thermodynamics and the origin of life. Adv Biol Med Phys 16:151–163

    PubMed  CAS  Google Scholar 

  • Morowitz HJ (1981) Phase separation, charge separation and biogenesis. Biosystems 14(1):41–47

    PubMed  CAS  Google Scholar 

  • Morowitz HJ, Heinz B, Deamer DW (1988) The chemical logic of a minimum protocell. Orig Life Evol Biosph 18(3):281–287

    PubMed  CAS  Google Scholar 

  • Muller AW (1995) Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion. Prog Biophys Mol Biol 63:193–231

    PubMed  CAS  Google Scholar 

  • Nicholis G (1989) Physics of far-from-equilibrium systems and self-organization. In: Davies P (ed) The new physics. Cambridge University Press, Cambridge, pp 316–347

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley-Interscience, New York

    Google Scholar 

  • Orgel LE (1995) Unnatural selection in chemical systems. Acc Chem Res 28(3):109–118

    PubMed  CAS  Google Scholar 

  • Pattee HH (1995a) Artificial life needs a real epistemology. In: Moran F (ed) Advances in artificial life. Springer, Berlin, pp 23–38

    Google Scholar 

  • Pattee HH (1995b) Evolving self-reference: matter, symbols, and semantic closure. Commun Cognit-Artif Intel 12:9–28

    Google Scholar 

  • Ponnamperuma C, Hobish MK, Wickramasinghe N (1995) The physicochemical origins of the genetic code. In: Chela-Flores J, Chadha M, Negron-Mendoza A, Oshima T (eds) Chemical evolution: self-organization of the macromolecules of life. Deepak Publishing, Hampton, pp 3–18

    Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos. Heinemann, London, pp 285–287, 297–301

    Google Scholar 

  • Quan HT, Wang YD, Liu YX, Sun CP, Nori F (2006) Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys Rev Lett 97(18):180402

    PubMed  CAS  Google Scholar 

  • Quan HT, Liu YX, Sun CP, Nori F (2007) Quantum thermodynamic cycles and quantum heat engines. Phys Rev E Stat Nonlin Soft Matter Phys 76(3 Pt 1):031105

    PubMed  CAS  Google Scholar 

  • Rocha LM (2001) Evolution with material symbol systems. Biosystems 60:95–121

    PubMed  CAS  Google Scholar 

  • Rocha LM, Hordijk W (2005) Material representations: from the genetic code to the evolution of cellular automata. Artif Life 11(1–2):189–214

    PubMed  Google Scholar 

  • Rokhsar DS, Anderson PW, Stein DL (1986) Self-organization in prebiological systems: simulations of a model for the origin of genetic information. J Mol Evol 23(2):119–126

    PubMed  CAS  Google Scholar 

  • Ruiz-Mirazo K, Moreno A, Moran F (1998) Merging the energetic and the relational-constructive logic of life. In: Adami C, Belew R, Kitano H, Taylor C (eds) Artificial life VI. MIT Bradford Books, Cambridge, pp 448–451

    Google Scholar 

  • Ruiz-Mirazo K, Pereto J, Moreno A (2010) Defining life or bringing biology to life. Orig Life Evol Biosph 40(2):203–213

    Google Scholar 

  • Sarkar S (1996) Biological information: a skeptical look at some central dogmas of molecular biology. In: Sarkar S (ed) The philosophy and history of molecular biology: new perspectives. Kluwer, Dordrecht, pp 187–231

    Google Scholar 

  • Sarkar S (2003) Genes encode information for phenotypic traits. In: Hitchcock C (ed) Contemporary debates in philosophy of science. Blackwell, London, pp 259–274

    Google Scholar 

  • Schiffmann Y (2007) Self-organization in and on biological spheres. Prog Biophys Mol Biol 95(1–3):50–59

    PubMed  CAS  Google Scholar 

  • Scully MO (2001) Extracting work from a single thermal bath via quantum negentropy. Phys Rev Lett 87(22):220601

    PubMed  CAS  Google Scholar 

  • Seeley T (2002) When is self-organization used in biological systems? Biol Bull 202(3):314–318

    PubMed  Google Scholar 

  • Sherman J, Deacon T (2007) Teleology for the perplexed: how matter began to matter. Zygon 42: 873–901

    Google Scholar 

  • Stegmann UE (2005) Genetic information as instructional content. Philos Sci 72:425–443

    Google Scholar 

  • Stent GS (1981) Strength and weakness of the genetic approach to the development of the nervous system. Annu Rev Neurosci 4:163–194

    PubMed  CAS  Google Scholar 

  • Stewart I (2003) Self-organization in evolution: a mathematical perspective. Philos Trans R Soc Lond 361:1101–1123

    Google Scholar 

  • Stonier T (1996) Information as a basic property of the universe. Biosystems 38(2–3):135–140

    PubMed  CAS  Google Scholar 

  • Swenson R (1989) Emergent attractors and the law of maximum entropy production. Syst Res 6:187–197

    Google Scholar 

  • Szilard L (1964) On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Behav Sci 9(4):301–310

    PubMed  CAS  Google Scholar 

  • Takeuchi N, Hogeweg P (2009a) Multilevel selection in models of prebiotic evolution II: a direct comparison of compartmentalization and spatial self-organization. PLoS Comput Biol 5(10):e1000542

    PubMed  Google Scholar 

  • Takeuchi N, Hogeweg P (2009b) Multilevel selection in models of prebiotic evolution II: a direct comparison of compartmentalization and spatial self-organization. PLoS Comput Biol 5(10):e1000542

    PubMed  Google Scholar 

  • Toussaint O, Schneider ED (1998) The thermodynamics and evolution of complexity in biological systems. Comp Biochem Physiol A Mol Integr Physiol 120(1):3–9

    PubMed  CAS  Google Scholar 

  • Trevors JT, Abel DL (2004) Chance and necessity do not explain the origin of life. Cell Biol Int 28:729–739

    PubMed  CAS  Google Scholar 

  • Turing AM (1936) On computable numbers, with an application to the entscheidungs problem. Proc R Soc Lond Math Soc 42(Ser 2):230–265, [correction in 243, 544–546]

    Google Scholar 

  • Umerez J (2001) Howard Pattee’s theoretical biology – a radical epistemological stance to approach life, evolution and complexity. Biosystems 60(1–3):159–177

    PubMed  CAS  Google Scholar 

  • Vesterby V (2008) Origins of self-organization, emergence and cause. ISCE Publishing, Goodyear

    Google Scholar 

  • von Neumann J (1950) [Letter to physicist George Gamow (first scientist to elucidate triplet codons) on July 25, 1950. Cited by Heims SJ (1980) John von Neumann and Norbert Wiener: from mathematics to the technologies of life and death. MIT Press, Cambridge]

    Google Scholar 

  • Weber BH, Depew DJ (1996) Natural selection and self-organization. Biol Philos 11(1):33–65

    Google Scholar 

  • Wiener N (1948) Cybernetics. Wiley, New York

    Google Scholar 

  • Wiener N (1961) Cybernetics, its control and communication in the animal and the machine, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Wills PR (1993) Self-organization of genetic coding. J Theor Biol 162(3):267–287

    PubMed  CAS  Google Scholar 

  • Wolpert L, Smith J, Jessell T, Lawrence P (2002) Principles of development. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Abel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abel, D.L. (2012). Moving “Far from Equilibrium” in a Prebiotic Environment: The Role of Maxwell’s Demon in Life Origin. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_13

Download citation

Publish with us

Policies and ethics