Skip to main content

Monitoring Plant and Groundwater Interactions

  • Chapter
  • First Online:
Introduction to Phytoremediation of Contaminated Groundwater
  • 1769 Accesses

Abstract

In general, the combined processes of evaporation and transpiration can remove about 70% of annual precipitation from a basin or, on a smaller scale, a phytoremediation site. But how much of this water is removed by transpiration? How much of this transpired water is derived from groundwater? Fortunately, geochemical methods can be used to elucidate the various sources of water, including groundwater, that comprise sap flow. These geochemical methods can be used in combination with the water-budget methods discussed previously to decipher plant and groundwater interactions at contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajami, H., Maddock III, T., Meixner, T., Hogan, J. F., Guertin, D. P. 2011. RIPGIS-NET: A GIS tool for riparian groundwater evapotranspiration in MODFLOW. Groundwater, article first published online March 8, 2011.

    Google Scholar 

  • Allen, S. J., & Grime, V. L. (1995). Measurements of transpiration from savannah shrubs using sap flow gauges. Agricultural & Forestry Meteorology, 75, 23–41.

    Article  Google Scholar 

  • Anderson, D. B. (1936). Relative humidity or vapor pressure deficit. Ecology, 17, 277–282.

    Article  Google Scholar 

  • Andraski, B. J., Stonestrom, D. A., Michel, R. L., Halford, K. J., & Radyk, J. C. (2005). Plant-based plume-scale mapping of tritium contamination in desert soils. Vadose Zone Journal, 4, 819–827.

    Article  CAS  Google Scholar 

  • Baird, J. B., & Maddock, T., III. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312, 176–190.

    Article  CAS  Google Scholar 

  • Baird, K. J., Stromberg, J. C., & Maddock, T., III. (2005). Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation. Environmental Management, 36, 551–564.

    Article  Google Scholar 

  • Baker, J. M., & van Bavel, C. H. M. (1987). Measurement of mass flow of water in the stems of herbaceous plants. Plant, Cell and Environment, 10, 777–782.

    Google Scholar 

  • Banta, E. R. 2000. MODFLOW-2000, the U.S. Geological Survey modular groundwater model – Documentation of packages for simulating evapotranspiration with a segmented function (ETS1) and drains with return flow (DRT1). U.S. Geological Survey Open-File Report 00–466. 135 p.

    Google Scholar 

  • Batelaan, O., Hung, L. Q., & Verbeiren, B. (2004). and DeSmedt, F. Mapping of wetness gradients by hyperspectral sensing of phreatophytes: Geophysical Research Abstracts.

    Google Scholar 

  • Becker, M. W. (2006). Potential for satellite remote sensing of groundwater. Groundwater, 44, 306–318.

    CAS  Google Scholar 

  • Belmans, C., Wesseling, J. G., & Feddes, R. A. (1981). Simulation model of the water balance of a cropped soil providing different types of boundary conditions (SWATRE) (p. 56). Institute for Land and Water Management Research: Wageningen.

    Google Scholar 

  • Bender, M. M. (1971). Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry, 10, 1239–1244.

    Article  CAS  Google Scholar 

  • Benyon, R. G. (1999). Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiology, 19, 853–859.

    Google Scholar 

  • Boyer, J. S., & Knipling, E. B. (1965). Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Proc. Natl. Acad. Sci. USA, 54, 1044–1051.

    Article  Google Scholar 

  • Caird, M. A., Richards, J. H., & Donovan, L. A. (2007). Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology, 143, 4–10.

    Article  CAS  Google Scholar 

  • Cermak, J., Jenik, J., Kucera, J., & Zidek, V. (1984). Xylem water flow in a crack willow tree (salix fragilis L.) in relation to diurnal changes of environment. Oecologia, 64, 145–151.

    Article  Google Scholar 

  • Clinton, B. D., Vose, J. M., Vroblesky, D. A., & Harvey, G. J. (2004). Determination of the relative uptake of ground vs. surface water by Populus deltoidies during phytoremediation. International Journal of Phytoremediation, 6, 239–252.

    Article  CAS  Google Scholar 

  • Cooper, D. I., Eichinger, W. E., Kao, J., Hipps, L., Reisner, J., Smith, S., Schaeffer, S. M., & Williams, D. G. (2000). Spatial and temporal properties of water vapor and latent energy flux over a riparian canopy. Agricultural and Forest Meteorology, 105, 161–183.

    Article  Google Scholar 

  • Cramer, V. A., Thorburn, P. J., & Fraser, G. W. (1999). Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland. Australia: Agricultural Water Management, 39, 187–204.

    Article  Google Scholar 

  • Daum, C. R. (1967). A method for determining water transport in trees. Ecology, 48, 425–431.

    Article  Google Scholar 

  • Davis, S. N., & DeWiest, R. J. M. (1966). Hydrogeology. New York: John Wiley & Sons, Inc. 463 p.

    Google Scholar 

  • Dawson, T. E. (1993). Water sources of plants as determined from xylem-water isotopic composition: perspectives on plant competition, distribution, and water relations. In J. R. Ehleringer, A. E. Hall, & G. D. Farquhar (Eds.), Stable isotopes and plant carbon-water relations (pp. 465–496). San Diego: Academic Press, Inc.

    Google Scholar 

  • Dawson, T. E., & Ehleringer, J. R. (1991). Streamside trees that do not use stream water. Nature, 350, 335–336.

    Article  Google Scholar 

  • Denmead, O. T., & Shaw, R. H. (1960). Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agronomy Journal, 54, 385–389.

    Article  Google Scholar 

  • Dugas, W. A., Heuer, M. L., & Mayeux, H. S. (1992). Diurnal measurements of honey mesquite transpiration using stem flow gauges. Journal of Range Management, 45, 99–102.

    Article  Google Scholar 

  • Eberts, S. M., Schalk, C. W., Vose, J., & Harvey, G. J. (1999). Hydrologic effects of cottonwood trees on a shallow aquifer containing trichloroethene. Hydrological Science and Technology, 15, 115–121.

    Google Scholar 

  • Farquhar, G. D., Cernusak, L. A., & Barnes, B. (2007). Heavy water fractionation during transpiration. Plant Physiology, 143, 11–18.

    Article  CAS  Google Scholar 

  • Ferro, A. M., Chard, J., Kjelgren, R., Chard, B., Turner, D., & Montague, T. (2001). Groundwater capture using hybrid poplar trees: Evaluation of a system in Odgen. Utah: International Journal of Phytoremediation, 3, 87–104.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (1988). Applied Hydrogeology: Merrill Publishing Company. OH: Columbus. 592 p.

    Google Scholar 

  • Flerchinger, G. N. (1991). Sensitivity of soil freezing simulated by the SHAW model. Transactions of the American Society of Agricultural Engineers, 34, 2381–2389.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall. 604 p.

    Google Scholar 

  • Gardner, W. R. (1960). Dynamic aspects of water availability to plants. Soil Science, 89, 63–73.

    Article  Google Scholar 

  • Gatliff, E. G. (1994, Summer). Vegetative remediation process offers advantages over traditional pump-and-treat technologies. Remediation, 4, 343–352.

    Google Scholar 

  • Gonthier, G. J. (2007). A graphical method for estimation of barometric efficiency from continuous data – concepts and application to a site in the Piedmont, Air Force Plant 6, Marietta, Georgia (U.S. Geological Survey Scientific Investigations Report 2007–5111, 29 p.).

    Google Scholar 

  • Gorelick, S. M., Freeze, R. A., Donohue, D., & Keely, J. F. (1993). Groundwater contamination: optimal capture and containment. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Greenwood, W. J., Kruse, S., & Swarzenski, P. (2006). Extending electromagnetic methods to map coastal pore water salinities. Groundwater, 44, 292–299.

    CAS  Google Scholar 

  • Hinckley, T. M., & Bruckerhoff, D. F. (1975). The effects of drought on water relations and stem shrinkage of Quercus alba. Canadian Journal of Botany, 53, 62–72.

    Article  Google Scholar 

  • Hinckley, T. M., Brooks, J. R., Cermak, J., Ceulemans, R., Kucera, J., Meinzer, F. C., & Roberts, D. A. (1994). Water flux in a hybrid poplar stand. Tree Physiology, 14, 1005–1018.

    Google Scholar 

  • Hogg, E. H., & Hurdle, P. A. (1997). Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology, 17, 501–509.

    Google Scholar 

  • Hopmans, J. W., & Van Immerzeel, C. H. (1988). Variation in evapotranspiration and capillary rise with changing soil profile characteristics. Agricultural Water Management, 13, 297–305.

    Article  Google Scholar 

  • Huber, B. (1932). Beobachtung und Messung pflanzlicher Saftstrome. Berichte der Deutschen Botanischen Gesellschaft, 50, 89–109.

    CAS  Google Scholar 

  • Hultline, K. R., Williams, D. G., Burgess, S. S. O., & Keefer, T. O. (2003). Contrasting patterns of hydraulic redistribution in three desert phreatophytes. Oecological, 135, 167–175.

    Google Scholar 

  • Hunt, E. R., Rock, B. N., & Nobel, P. S. (1987). Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment, 22, 4210–4435.

    Google Scholar 

  • Iritz, Z., & Lindroth, A. (1994). Night-time evaporation from a short-rotation willow stand. Journal of Hydrology, 157, 235–245.

    Article  Google Scholar 

  • Jenson, J. R. (2000). Remote sensing of the environment: an earth resource perspective:. Upper Saddle River, NJ: Prentice-Hall, Inc. 544 p.

    Google Scholar 

  • Klijn, F., & Witte, J. P. M. (1999). Eco-hydrolog: Groundwater flow and site factors in plant ecology. Hydrogeology Journal, 7, 65–77.

    Article  Google Scholar 

  • Kramer, P. J. (1983). Water Relations of Plants. New York: Academic Press.

    Google Scholar 

  • Kucera, C. L. (1954). Some relationships of evaporation rate to vapor pressure deficit and low wind velocity. Ecology, 35, 71–75.

    Article  Google Scholar 

  • Landmeyer, J. E. (1994). Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina (U.S. Geological Survey Water-Resources Investigations Report 94–4012, 33 p.).

    Google Scholar 

  • Landmeyer, J. E. (1996). Aquifer response to record low barometric pressures in the southeastern United States. Groundwater, 34, 917–924.

    CAS  Google Scholar 

  • Le Maitre, D. C., Scott, D. F., & Colvin, C. (1999). A review of information on interactions between vegetation and groundwater. Water SA, 25, 137–152.

    Google Scholar 

  • Leenhouts, J. M., Stromberg, J. C., Scott, R. L. (Eds.). (2006). Hydrologic requirements of and consumptive groundwater use by riparian vegetation along the San Pedro River, Arizona (U.S. Geological Survey Scientific Investigations Report 2005–5163, 154 p.).

    Google Scholar 

  • Maddock III, T., & Baird, K. J. (2003). A riparian evapotranspiration package for MODFLOW-96 and MODFLOW-2000 (HWR No. 02–03). Department of Hydrology and Water Resources, University of Arizona Research Laboratory for Riparian Studies. Tucson, AZ: University of Arizona.

    Google Scholar 

  • McDermitt, D. K. (1990). Sources of error in the estimation of stomatal conductance and transpiration from porometer data. Hort. Sci., 25, 1538–1548.

    Google Scholar 

  • McKay, S. E., Kluitenberg, G. J., Butler Jr., J. J., Zhan, X., Aufman, M. S., & Brauchler, R. (2004). In-situ determination of specific yield using soil moisture and water level changes in the riparian zone of the Arkansas River, Kansas (EOS Transactions, AGU Vol. 85). Fall Meeting Supplement, Abstract H31D–0425.

    Google Scholar 

  • Meinzer, O. E. (1927). Plants as indicators of groundwater (U.S. Geological Survey Water-Supply Paper 577, 95 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Meyboom, P. (1966). Unsteady groundwater flow near a willow ring in hummocky moraine. Journal of Hydrology, 4, 38–62.

    Article  Google Scholar 

  • Monteith, J.L. 1965. Evaporation and environment, in The State and movement of water in living organisms, Symposium of the Society of Experimental Biology, San Diego, CA. Fogg, G.E., Ed., Academic Press, 205–234.

    Google Scholar 

  • Mower, R.W., Hood, J.W., Cushman, R.L., Borton, R.L., and Galloway, S.E. 1964. An appraisal of potential groundwater salvage along the Pecos River between Acme and Artesia, New Mexico: U.S.Geological Survey Water-Supply Paper 1659, 98 pp.

    Google Scholar 

  • Nadezhdina, N. (1999). Sap flow as an indicator of plant water status. Tree Physiology, 19, 885–891.

    Google Scholar 

  • National Research Council. (1994). Alternatives for groundwater cleanup: Washington. Washington, D.C: D.C. National Academy of Sciences.

    Google Scholar 

  • Nnyamah, J. U., & Black, T. A. (1977). Rates and patterns of water uptake in a Douglas-Fir forest. Journal of the Soil Science Society of America, 41, 972–979.

    Article  Google Scholar 

  • Oren, R., Phillips, N., Ewers, B. E., Pataki, D. E., & Megonigal, J. P. (1999). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337–347.

    Google Scholar 

  • Park, R., & Epstein, S. (1960). Carbon isotope fractionation during photosynthesis. Geochimica et Cosmochimica Acta, 21, 110–126.

    Article  CAS  Google Scholar 

  • Persson, G. (1995). Willow stand evapotranspiration simulated for Swedish soils. Agricultural Water Management, 28, 271–293.

    Article  Google Scholar 

  • Preston, G. M., & McBride, R. A. (2004). Assessing the use of poplar tree systems as a landfill evapotranspiration barrier with the SHAW model. Water Management Research, 22, 291–305.

    CAS  Google Scholar 

  • Preston, G. M., McBride, R. A., Bryan, J., & Candido, M. (2004). Estimating root mass in young hybrid poplar trees using the electrical capacitance method. Agroforestry Systems, 60, 305–309.

    Article  Google Scholar 

  • Quinn, J. J., & Johnson, R. L. (2005). Continuous water-level monitoring in the assessment of groundwater remediation and refinement of a conceptual site model. Remediation Journal, 15, 49–61.

    Article  Google Scholar 

  • Raes, D. 2004. UPFLOW: Water movement in a soil profile from a shallow water table to the topsoil (capillary rise): Reference manual, version 2.2. K.U. Leuven University. 18p.

    Google Scholar 

  • Raes, D., & Deproost, P. (2003). Model to assess water movement from a shallow water table to the root zone. Agricultural Water Management, 62, 79–91.

    Article  Google Scholar 

  • Richards, J. H., & Caldwell, M. M. (1987). Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridenta roots. Oecologia, 73, 486–489.

    Article  Google Scholar 

  • Robinson, T. W., & Donaldson, D. (1967). Pontacyl brilliant pink as tracer dye in the movement of water in phreatophytes. Water Resources Research, 3, 203–211.

    Article  CAS  Google Scholar 

  • Rodell, M., & Famiglietti, J. S. (2002). The potential for satellite-based monitoring of groundwater storage changes using GRACE: The High Plains aquifer. Central US: Journal of Hydrology, 263, 245–256.

    Google Scholar 

  • Rural Industries Research and Development Corporation. 2000. Sustainable hardwood production in shallow watertable areas: Water and salinity issues in agroforestry no. 6, RIRDC publication no. 00/163, 105 p.

    Google Scholar 

  • Sakuratani, T. (1981). A heat balance method for measuring water flux in the stem of intact plants. J Agric Meteor, 37, 9–17.

    Article  Google Scholar 

  • Schaeffer, S., Williams, D. G., & Goodrich, D. C. (2000). Transpiration of cottonwood/willow forest estimated from sap flux. Agricultural and Forest Meteorology, 105, 257–270.

    Article  Google Scholar 

  • Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom, J.W., and Peyton. 1994. The hydrologic evaluation of landfill performance (HELP) model engineering documentation for version 3: EPA/600/R–94/168B, U.S. EPA Risk Reduction Engineering Laboratory, Cincinnati, OH.

    Google Scholar 

  • Scott, R. L., Watts, C., Payan, J. G., Edwards, E., Goodrich, D. C., Williams, D., & Shuttleworth, W. J. (2003). The understory and overstory partitioning of energy and water fluxes in an open canopy, semiarid woodland. Agricultural and Forest Meteorology, 114, 127–139.

    Article  Google Scholar 

  • Scrimgeour, C. M. (1995). Measurement of plant and soil water isotope composition by direct equilibrium methods. Journal of Hydrology, 172, 261–274.

    Article  CAS  Google Scholar 

  • Shah, N., Nachabe, M., & Ross, M. (2007). Extinction depth and evapotranspiration from groundwater under selected land covers. Groundwater, 45, 329–338.

    CAS  Google Scholar 

  • Skaggs, R. W., Wells, L. G., & Ghate, S. R. (1978). Predicted and measured drainage porosities for field soils. Transactions of the ASAE, 22, 522–528.

    Google Scholar 

  • Snyder, K. A., & Williams, D. G. (2000). Water sources used by riparian trees varies among stream types on the San Pedro River. Arizona: Agricultural and Forest Meteorology, 105, 227–240.

    Article  Google Scholar 

  • Spittlehouse, D. L., & Black, T. A. (1981). A growing season water balance model applied to two Douglas fir stands. Water Resources Research, 17, 1651–1656.

    Article  Google Scholar 

  • Steinberg, S., van Bavel, C. H. M., & McFarlane, M. J. (1989). A gauge to measure mass flow rate of sap in stems and trunks of woody plants. J. Amer. Soc. Hort. Sci., 114, 466–472.

    Google Scholar 

  • Steinberg, S. L., van Bavel, C. H. M., & McFarland, M. J. (1990a). Improved sap flow gauge for woody and herbaceous plants. Agron. J., 82, 851–854.

    Article  Google Scholar 

  • Steinberg, S. L., McFarland, M. J., & Worthington, J. W. (1990b). Comparison of trunk andbranch sap flow with canopy transpiration in pecan. Journal of Experimental Botany, 41, 653–659.

    Article  Google Scholar 

  • Sternberg, L., DeNiro, M. J., & Johnson, H. B. (1986). Oxygen and hydrogen isotope ratios of water from photosynthetic tissues of CAM and C3 plants. Plant Physiology, 82, 428–431.

    Article  CAS  Google Scholar 

  • Van Bavel, C.H.M., and van Bavel, M.1988. ETP software. Dynamax.

    Google Scholar 

  • Van Bavel, C. H. M., Nakayama, F. S., & Ehrler, W. L. (1965). Measuring transpiration resistance of leaves. Plant Physiology, 40, 535–540.

    Article  Google Scholar 

  • Vieweg, G. H., & Ziegler, H. (1960). Thermoelektrische Registrierung der Geschwindigkeit des Transpirationsstromes. Berichte. Deutsche Botanische Gesellschaft., 73, 221–226.

    Google Scholar 

  • Vose, J. M., Swank, W. T., Harvey, G. J., Clinton, B. D., & Sobek, C. (2000). Leaf water relations and sapflow in eastern cottonwood (Populus deltoids Bartr.) trees planted for phytoremediation of a groundwater pollutant. International Journal of Phytoremediation, 2, 53–73.

    Article  Google Scholar 

  • Weyers, J., & Meidner, H. (1990). Methods in stomata research: Longman Scientific and Technical. London: Essex.

    Google Scholar 

  • White, W. N. (1932). A method of estimating groundwater supplies based on discharge by plants and evaporation from soil-results of investigations in Escalante Valley, Utah (Part A): In Contributions to the hydrology of the United States, U.S. Geological Survey Water-Supply Paper, 659, 1–106.

    Google Scholar 

  • White, J. W., Cook, E. R., Lawrence, J. R., & Broecker, W. S. (1985). The D/H ratios of sap in trees: Implications for water sources and tree ring D/H ratios. Geochimica et Cosmochimica Acta, 49, 237–246.

    Article  CAS  Google Scholar 

  • Widdowson, M. A., Shearer, S., Andersen, R. G., & Novak, J. T. (2005a). Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environmental Science & Technology, 39, 1598–1605.

    Article  CAS  Google Scholar 

  • Wullschleger, S. D., Meinzer, F. C., & Vertessy, R. A. (1998). A review of whole-plant water use studies in trees. Tree Physiology, 18, 499–512.

    Google Scholar 

  • York, J. P., Person, M., Gutowski, W. J., & Winter, T. C. (2002). Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, northeastern Kansas. Advances in Water Resources, 25, 221–238.

    Article  Google Scholar 

  • Zhang, H., Morison, J. I. L., & Simmonds, L. P. (1999). Transpiration and water relations of poplar trees growing close to the water table. Tree Physiology, 19, 563–573.

    Google Scholar 

  • Ziegler, H. 1995. Stable isotopes in plant physiology: Progress in Botany (56):1–24, Zimmermann, R.C. 1969. Plant ecology of an arid basin Tres Alamos-Redington area Southeastern Arizona: U.S. Geological Survey Professional Paper 485–D, 51 p.

    Google Scholar 

  • Zimmermann, U. (1989). Water relations of plant cells: Pressure probe technique. Methods in Enzymology, 174, 338–366.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Schneider, H., Wegner, L. H., & Haase, A. (2004). Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytologist, 162, 575–615.

    Article  Google Scholar 

  • Green, S.R., Kirkham, M.B., and Clothier, B.E., (2006). Root uptake and transpiration-From measurements and models to sustainable irrigation: Agricultural Water Management (86):165–176.

    Google Scholar 

  • Mirck, J., and Volk, T.A., (2010) Seasonal sap flow of four Salix varieties growing on the Solvay wastebeds in Syracuse, NY, USA: International Journal of Phytoremediation (12):1–23.

    Article  Google Scholar 

  • Scholander, P. F., Hammel, H. T., Bradstreet, E. D., & Hemmingsen, E. A. (1965). Sap pressure in vascular plants. Science, 148, 339–346.

    Article  CAS  Google Scholar 

  • Busch, D. E., Ingraham, N. L., & Smith, S. D. (1992). Water uptake in woody riparian phreatophytes of the Southwestern United States: A stable isotope study. Ecological Applications, 2, 450–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Landmeyer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Landmeyer, J.E. (2012). Monitoring Plant and Groundwater Interactions. In: Introduction to Phytoremediation of Contaminated Groundwater. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1957-6_9

Download citation

Publish with us

Policies and ethics