Skip to main content

Plant and Groundwater Interactions Under Pristine Conditions

  • Chapter
  • First Online:
Introduction to Phytoremediation of Contaminated Groundwater

Abstract

An initial understanding of plant and groundwater interactions did not follow a straightforward path. For example, it took many years and developments in forensic chemistry to elucidate that the oxygen released by plants during photosynthesis was derived from water absorbed by roots rather than from atmospheric CO2 absorbed by the leaves. Also, geochemical techniques that involved stable isotopes revealed that trees that grow on the banks of rivers tap groundwater rather than the seemingly more available source provided by surface water. Moreover, the facts that groundwater is not readily observed and that plants release invisible water vapor makes it easy to forget that plants move enormous volumes of water on a daily basis, a process that is essentially hidden in plain sight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, S. J., Hall, R. L., & Rosier, P. T. W. (1999). Transpiration by two poplar varieties grown as coppice for biomass production. Tree Physiology, 19, 493–501.

    Google Scholar 

  • Andraski, B. J., Sandstrom, M. W., Michel, R. L., Radyk, J. C., Stonestrom, D. A., Johnson, M. J., & Mayers, C. J. (2003). Simplified method for detecting tritium contamination in plants and soil. Journal of Environmental Quality, 32, 988–995.

    Article  CAS  Google Scholar 

  • Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agricultural Water Management, 53, 213–226.

    Article  Google Scholar 

  • Benayas, J. M., Bernáldez, F. G., Levassor, C., & Peco, B. (1990). Vegetation of groundwater discharge sites in the Douro Basin. Central Spain: Journal of Vegetation Science, 1, 461–466.

    Article  Google Scholar 

  • Bernaldez, F. G., & Benayas, J. M. (1992). Geochemical relationships between groundwater and wetland soils and their effects on vegetation in central Spain. Geoderma, 55, 273–288.

    Article  CAS  Google Scholar 

  • Bond, B. (2003). Hydrology and ecology meet – and the meeting is good. Hydrological Processes, 17, 2087–2089.

    Article  Google Scholar 

  • Bond, B. J., Jones, J. A., Moore, G., Phillips, N., Post, D., & McDonnell, J. J. (2002). The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin. Hydrological Processes, 16, 1671–1677.

    Article  Google Scholar 

  • Bormann, F. H., & Likens, G. E. (1967). Nutrient cycling. Science, 155, 424–428.

    Article  CAS  Google Scholar 

  • Bosch, D. D., Lowrance, R. R., Sheridan, J. M., Williams, R. G. 2003. Groundwater storage effect on streamflow for a southeastern coastal plain watershed. Groundwater–Watershed Issue, 41,903–912.

    Google Scholar 

  • Bouwer, H. (1975). Predicting reduction of water losses from open channels by phreatophyte control. Water Resources Research, 11, 96–101.

    Article  Google Scholar 

  • Bowie, J. E., Kam, W. 1968. Use of water by riparian vegetation, Cottonwood Wash, Arizona (U.S. Geological Survey Water-Supply Paper 1858, 62 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Butler, J. J., Jr., Whittenmore, D. O., Kluitenberg, G. J. 2005. Groundwater assessment in association with salt cedar control – report on year one activities. Kansas Geological Survey Open-File Report 2005–19. 35 p.

    Google Scholar 

  • Collings, M. R., Myrick, R. M. 1966. Effects of juniper and pinyon eradication on streamflow from Corduroy Creek Basin, Arizona (U.S. Geological Survey Professional Paper 491–B, 12 p.). Washington, DC: U.S. Goverment Printing Office.

    Google Scholar 

  • Culler, R. C., Hansom, R. L., Myrick, R. M., Turner, R. M., Kipple, F. P. 1982. Evapotranspiration before and after clearing phreatophytes, Gila River floodplain, Graham County, Arizona (U.S. Geological Survey Professional Paper 655–P).Washington, DC: US Government Printing Office.

    Google Scholar 

  • Dawson, T. E., & Ehleringer, J. R. (1991). Streamside trees that do not use stream water. Nature, 350, 335–336.

    Article  Google Scholar 

  • Douglass, A. E. 1924. Some aspects of the use of the annual rings of trees in climatic study (pp. 223–239). Smithsonian Institution Report for 1922 (Publication 2731).

    Google Scholar 

  • Dunford, E. G., & Fletcher, P. W. (1947). Effect of removal of stream-bank vegetation upon water-yield. American Geophysical Union Transactions, 28, 105–110.

    Google Scholar 

  • Ferris, J. G. (1949). Groundwater. In C. O. Wisler & E. F. Brater (Eds.), Hydrology: John Wiley & Sons (pp. 198–273). New York: Inc.

    Google Scholar 

  • Fetter, C. W. (1988). Applied Hydrogeology: Merrill Publishing Company. OH: Columbus. 592 p.

    Google Scholar 

  • Freely, J. (2004). The western shores of Turkey: Discovering the Aegean and Mediterranean coasts. London: Tauris Parke Paperbacks. 148 p.

    Google Scholar 

  • Gatewood, J. S., Robinson, T. W., Colby, B. R., Hem, J. D., Halpenny, L. C. 1950. Use of water by bottom-land vegetation in lower Safford Valley Arizona (U.S. Geological Survey Water-Supply Paper 1103, 210 p.). Washington, DC: US Goverment Printing Office.

    Google Scholar 

  • George, R. J., Nulsen, R. A., Ferdowsian, R., & Raper, G. P. (1999). Interactions between trees and groundwaters in recharge and discharge areas – A survey of Western Australian sites. Agricultural Water Management, 39, 91–113.

    Article  Google Scholar 

  • Gleason, P. J., & Stone, P. A. (1994). Age, origin, and landscape evolution of the Everglades peatland. In S. M. Davis & J. C. Ogden (Eds.), Everglades: The Ecosystem and its Restoration (St Lucie Press, pp. 149–197). Florida: Delray Beach.

    Google Scholar 

  • Gribovszki, A., Szilágyi, J., & Kalicz, P. (2010). Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation – A review. Journal of Hydrology, 385, 371–383.

    Article  Google Scholar 

  • Hanson, R. L., Dawdy, D. R. (1976). Accuracy of evapotranspiration rates determined by the water-budget method, Gila River flood plain, Southeastern Arizona (U.S. Geological Survey Professional Paper 655–L, 35 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Harvey, F. E., Swinehart, J. B., & Kurtz, T. M. (2007). Ground water sustenance of Nebraska’s unique sand hills peatland fen ecosystems: Ground Water, 45(2), 218–234.

    CAS  Google Scholar 

  • Heuperman, A. (1999). Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems. Agricultural Water Management, 39, 153–167.

    Article  Google Scholar 

  • Johnston, C. D. (1987). Preferred water flow and localised (sic) recharge in a variable regolith. Journal of Hydrology, 94, 129–142.

    Article  Google Scholar 

  • Jordan, D. G., Fisher, D. W. (1977). Relation of bulk precipitation and evapotranspiration to water quality and water resources, St. Thomas, Virgin Islands (U.S. Geological Survey Water-Supply Paper 1662–I, 30 p.). Reston, VA: US Geological Survey.

    Google Scholar 

  • Kluitenberg, G. J., Butler, J. J. Jr., Whittenmore, D. O. (2005). A field investigation of major controls on phreatophyte-induced fluctuations in the water table. ASA-CSSA-SSSA International Annual Meeting, November 6–10, 2005, Salt Lake City, UT.

    Google Scholar 

  • Larcher, W. (1983). Physiological Plant Ecology. Berlin: Springer-Verlag.

    Google Scholar 

  • Le Maitre, D. C., Scott, D. F., & Colvin, C. (1999). A review of information on interactions between vegetation and groundwater. Water SA, 25, 137–152.

    Google Scholar 

  • Lee, C. H. (1912). An intensive study of the water resources of a part of Owens Valley, California (U.S. Geological Survey Water-Supply Paper 294, 135 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Lee, C. H. (1942). Transpiration and total evaporation. In O. E. Meinzer (Ed.), Hydrology (pp. 259–330). Inc: Dover Publications.

    Google Scholar 

  • Leenhouts, J. M., Stromberg, J. C., Scott, R. L. (Eds.). (2006). Hydrologic requirements of and consumptive groundwater use by riparian vegetation along the San Pedro River, Arizona (U.S. Geological Survey Scientific Investigations Report 2005–5163, 154 p.).

    Google Scholar 

  • Lines, G. C., Bilhorn, T. W. (1996). Riparian vegetation and its water use during 1995 along the Mojave River, Southern California (U.S. Geological Survey Water-Resources Investigations Report 96–4241, 10 p.).

    Google Scholar 

  • Lite, S. J., & Stromberg, J. C. (2005). Surface water and groundwater thresholds for maintaining Populus – Salix forests. San Pedro River, Arizona: Biological Diversity, 125, 153–167.

    Google Scholar 

  • Lowry, C. S., Loheide II, S. P. (2010). Groundwater-dependent vegetation: Quantifying the groundwater subsidy. Water Resources Research, 46, published online 17 June 2010.

    Google Scholar 

  • Lubczynski, M. W. (2009). The hydrogeological role of trees in water-limited environments. Hydrogeology Journal, 17, 247–259.

    Article  Google Scholar 

  • McDonald, C. C., & Hughes, G. H. (1968). Studies of the consumptive use of water by phreatophytes and hydrophytes near Yuma, Arizona (U.S. Geological Survey Professional Paper 486–F, 24 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Meyboom, P. (1966). Unsteady groundwater flow near a willow ring in hummocky moraine. Journal of Hydrology, 4, 38–62.

    Article  Google Scholar 

  • Moreo, M.T., Laczniak, R.J., and Stannard, D.I. 2007. Evapotranspiration rate measurements of vegetation typical of ground-water discharge areas in the Basin and Range Carbonate-Rock Aquifer System, Nevada and Utah, September 2005–August 2006: U.S. Geological Survey Scientific Investigations Report 2007–5078, 36p.

    Google Scholar 

  • Mower, R.W., and Feltis, R.D. 1968. Groundwater hydrology of the Sevier Desert, Utah: U.S. Geological Survey Water-Supply Paper 1854, 75 p.

    Google Scholar 

  • Mower, R.W., and Nace, R.L. 1957. Water consumption by water-loving plants in the Malad Valley, Oneida County, Idaho: U.S. Geological Survey Water-Supply Paper 1412, 33 p.

    Google Scholar 

  • Mower, R.W., Hood, J.W., Cushman, R.L., Borton, R.L., and Galloway, S.E. 1964. An appraisal of potential groundwater salvage along the Pecos River between Acme and Artesia, New Mexico: U.S.Geological Survey Water-Supply Paper 1659, 98 pp.

    Google Scholar 

  • Nichols, W. D. (1993). Estimating discharge of shallow groundwater by transpiration from greasewood in the Northern Great Basin. Water Resources Research, 29, 2771–2778.

    Article  Google Scholar 

  • Nimick, D. A., Gammons, C. H., Cleasby, T. E., Madison, J. P., Skaar, D., & Brick, C. M. (2003). Diel cycles in dissolved metal concentrations in streams – occurrence and possible causes. Water Resources Research, 39, 1247.

    Article  Google Scholar 

  • O’Conner, T.G. 1985. A synthesis of field experiments concerning the grass layer in the Savanna Regions of South Africa: Report No. 114. South African National Scientific Programmes, Foundation for Research Development, Pretoria.

    Google Scholar 

  • Palmroth, S., Katul, G.G., Hui, D., McCarthy, H.R., Jackson, R.B., and Oren, R. 2010. Estimation of long-term basin scale evapotranspiration from streamflow time series. Water Resources Research (46): Published online 9 October 2010.

    Google Scholar 

  • Pate, J. S., Jeschke, W. D., & Aylward, M. J. (1995). Hydraulic architecture and xylem structure of the dimorphic root systems of south-west Australian species of Proteaceae. Journal of Experimental Botany, 46, 907–915.

    Article  CAS  Google Scholar 

  • Poulsen, D. L., Simmons, C. T., Le Galle La Salle, C., & Cox, J. W. (2006). Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity. Hydrogeology Journal, 14, 1339–1359.

    Article  CAS  Google Scholar 

  • Rheinhardt, R. D., & Hershner, C. (1992). The relationship of below-ground hydrology to canopy composition in five tidal freshwater swamps. Wetlands, 12, 208–216.

    Article  Google Scholar 

  • Robinson, T.W. 1958. Phreatophytes: U.S. Geological Survey Water–Supply Paper 1423, 84 p.

    Google Scholar 

  • Robinson, T.W. 1965. Introduction, spread and areal extent of saltcedar (Tamarix) in the Western States: U.S. Geological Survey Professional Paper 491–A. 12 p.

    Google Scholar 

  • Roelle, J.E., and Hagenbuck, W.W. 1995. Surface cover changes in the Rio Grande floodplain, 1935–89: In LaRoe, E.T., Farris, G.S., Puckett, C.E., Doran, P.D., Mac, M.J., eds. Our Living Resources: A report to the nation on the distribution, abundance, and health of U.S. plants, animals, and ecosystems. U.S. Department of the Interior, National Biological Service, U.S. Geological Survey, 290–292.

    Google Scholar 

  • Rosenberry, D. O., Striegl, R. G., & Hudson, D. C. (2000). Plants as indicators of focused groundwater discharge to a northern Minnesota lake. Groundwater, 38, 296–303.

    CAS  Google Scholar 

  • Ross, M. S., Mitchell-Bruker, S., Sah, J. P., Stothoff, S., Ruiz, P. L., Reed, D. L., Jayachandran, K., & Coultas, C. L. (2006). Interaction of hydrology and nutrient limitation in the Ridge and Slough landscape of the southern Everglades. Hydrobiologia, 569, 37–59.

    Article  CAS  Google Scholar 

  • Sánchez-Pérez, J. M., Lucot, E., Bariac, T., & Trémolières, M. (2008). Water uptake by trees in a riparian hardwood forest (Rhine floodplain, France). Hydrological Processes, 22, 366–375.

    Article  Google Scholar 

  • Scott, M. L., Shafroth, P. B., & Auble, G. T. (1999). Responses of riparian cottonwoods to alluvial water table declines. Environmental Management, 23, 347–358.

    Article  Google Scholar 

  • Smith, G.E.P. 1915. Am. Soc. Civil Eng. Trans (78).

    Google Scholar 

  • Speiran, G. K. (2010). Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors. Journal of the American Water Resources Association, 46, 246–260.

    Article  CAS  Google Scholar 

  • Szilágyi, J., Gribovszki, Z., Kalicz, P., & Kucsara, M. (2008). On diurnal riparian zone groundwater-level and streamflow fluctuations. Journal of Hydrology, 349, 1–5.

    Article  Google Scholar 

  • Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A., Muller, E., and Décamps, H. 2000. Impacts of riparian vegetation on hydrological processes: Hydrological Processes (14):2959–2976.

    Google Scholar 

  • Thomas, H.E. 1952. Hydrologic reconnaissance of the Green River in Utah and Colorado: U.S. Geological Survey Circular 129.

    Google Scholar 

  • Trousdell, K. B., & Hoover, M. D. (1955). A change in groundwater level after clearcutting of loblolly pine in the coastal plain. Journal of Forestry, 53, 493–498.

    Google Scholar 

  • Van der Leeden, F., Troise, F. L., & Todd, D. K. (1990a). The Water Encyclopedia. Michigan, USA: Lewis Publishers, Inc. 808 p.

    Google Scholar 

  • Van der Leeden, F., Troise, F. L., & Todd, D. K. (1990b). The water encyclopedia: Lewis Publishers. Michigan: Chelsea.

    Google Scholar 

  • Van Hylckama, T.E.A. 1974. Water use by saltcedar as measured by the water budget method: U.S. Geological Survey Professional Paper 491–E, 30 p.

    Google Scholar 

  • Verry, E. S. (2003). Estimating groundwater yield in small research basins. Groundwater, 41, 1001–1004.

    CAS  Google Scholar 

  • White, W. N. (1932). A method of estimating groundwater supplies based on discharge by plants and evaporation from soil-results of investigations in Escalante Valley, Utah (Part A): In Contributions to the hydrology of the United States, U.S. Geological Survey Water-Supply Paper, 659, 1–106.

    Google Scholar 

  • Winter, T. C. (1999). Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal, 7, 28–45.

    Article  Google Scholar 

  • Winter, T. C., & Rosenberry, D. O. (1995). The interaction of groundwater with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1979–1990. Wetlands, 15, 193–211.

    Article  Google Scholar 

  • Winter, T.C., Harvey, J.W., Franke, O.L, and Alley, W.M. 1998. Groundwater and surface water – a single resource: U.S. Geological Survey Circular 1139, 79 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Landmeyer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Landmeyer, J.E. (2012). Plant and Groundwater Interactions Under Pristine Conditions. In: Introduction to Phytoremediation of Contaminated Groundwater. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1957-6_5

Download citation

Publish with us

Policies and ethics