Skip to main content

Economic and Regulatory Factors That Affect the Phytoremediation of Contaminated Groundwater

  • Chapter
  • First Online:
  • 1731 Accesses

Abstract

This passage from the end of the children’s classic The Lorax provides a solution to the overuse of natural resources that was the central theme in the book, in this case, the removal of every last Truffula tree. But it also provides a message that some environmental problems can be solved, or at least left in a better condition, through the careful management of plants. In this case, phytoremediation may bring back cleaner groundwater, rather than the Lorax and all his friends.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alley, W. M., & Leake, S. A. (2004). The journey from safe yield to sustainability. Groundwater, 42, 12–16.

    Google Scholar 

  • Chard, B. K., Doucette, W. J., Chard, J. K., Bugbee, B., & Gorder, K. (2006). Trichloroethylene uptake by apple and peach trees and transfer to fruit. Environmental Science & Technology, 40, 4788–4793.

    Article  CAS  Google Scholar 

  • Chiou, C. T. (2002). Partition and adsorption of organic contaminants in environmental systems:. Hoboken, NJ: John Wiley & Sons, Inc. 257 p.

    Book  Google Scholar 

  • Collins, C. D., Bell, J. N. B., & Crews, C. (2000). Benzene accumulation in horticultural crops. Chemosphere, 40, 109–114.

    Article  CAS  Google Scholar 

  • Davis, L. C., Banks, M. K., Schwab, A. P., Muralidharan, N., Erickson, L. E., & Tracy, J. C. (1996). Plant based bioremediation. In S. Sikdar & R. Irvine (Eds.), Bioremediation. Lancaster, PA: Technomics Publishing Company.

    Google Scholar 

  • Doucette, W. J., Chard, J. K., Fabrizius, H., Crouch, C., Petersen, M., & Gorder, K. (2007). Trichloroethylene uptake into fruits and vegetables: three-year field monitoring study. Environmental Science & Technology, 41, 2505–2509.

    Article  CAS  Google Scholar 

  • Ellstrand, N. C., Prentice, H. C., & Hancock, J. F. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecological Systems, 30, 539–563.

    Article  Google Scholar 

  • James, C. A., Xin, G., Doty, S. L., Strand, S. E. (2007). Degradation of low molecular weight volatile organic compounds by plants genetically modified with mammalial cyctochrome P450 2E1: Environmental Science & Technology, 42(1), 289-293.

    Google Scholar 

  • Linacre, N. A., Whiting, S. N., Baker, A. J. M., Angle, J. S., & Ades, P. K. (2003). Transgenics and phytoremediation: the need for an integrated risk assessment, management, and communication strategy. International Journal of Phytoremediation, 5, 181–185.

    Article  Google Scholar 

  • Ma, X. M., & Burken, J. G. (2003). TCE diffusion to the atmosphere in phytoremediation applications. Environmental Science & Technology, 37, 2534–2539.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. New York: Academic Press.

    Google Scholar 

  • Martin, R. S., Villanueva, I., Zhang, J., & Popp, C. J. (1999). Nonmethane hydrocarbon, monocarboxylic acid, and low molecular weight aldehyde and ketone emissions from vegetation in central New Mexico. Environmental Science & Technology, 33, 2186–2192.

    Article  CAS  Google Scholar 

  • Newman, L.A., Gordon, M.P., Heilman, P., Cannon, D.L., Lory, E., Miller, K., Osgood, J., and Strand, S.E. 1999a. Phytoremediation of MTBE at a California naval site: Soil & Groundwater Cleanup. 42–45.

    Google Scholar 

  • Plewa, M. J., & Wagner, E. D. (1993). Activation of promutagens by green plants. Annual Review in Genetics, 27, 93–113.

    Article  CAS  Google Scholar 

  • Pollan, M. (2001). The botany of desire; a plant’s-eye view of the world. New York: Random House, Inc. 271 p.

    Google Scholar 

  • Robinson, B., Green, S., Mills, T., Clothier, B., van der Velde, M., Laplane, R., Fung, L., Deuer, M., Hurst, S., Thayalakumaran, T., & van der Dijssel, C. (2003). Phytoremediation: using plants as biopumps to improve degraded environments. Australian Journal of Soil Research, 41, 599–611.

    Article  Google Scholar 

  • Rotteveel, T., Al-ahmad, H., and Gressel, J. 2006. Assessing risks and containing or mitigating gene-flow of transgenic and non-transgenic phytoremediating plants, in M. Mackova, D.N. Dowling, and T. Macek (eds) Phytoremediation Rhizoremediation, 259–284.

    Google Scholar 

  • Schnabel, W. E., Dietz, A. C., Burken, J. G., Schnoor, J. L., & Alvarez, P. J. (1997). Uptake and transformation of trichloroethylene by edible garden plants. Water Research, 31, 816–824.

    Article  CAS  Google Scholar 

  • Schwarz, O.J., and Eisele, G.R. 1984. Food chain transport of synfuels: experimental approaches for acquisition of baseline data:, In Synthetic fossil fuel technologies: result of health and environmental studes (K.E. Cowser, ed.,. Proceedings of the Fifth Life Sciences Symposium, Gatlinburg, TN:441–462.

    Google Scholar 

  • Schwarz, O.J., and Jones, L.W. 1997. Bioaccumulation of xenobiotic organic chemicals by terrestrial plants in Plants for Environmental Studies, W. Wang, J.W. Gorsuch, and J.S. Hughes, eds, CRC Press, Boca Raton, FL, pp. 417–449.

    Google Scholar 

  • Schröder, P., & Collins, C. (2002). Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. International Journal of Phytoremediation, 4, 247–265.

    Article  Google Scholar 

  • Scott, R. L., Huxman, T. E., Williams, D. G., & Goodrich, D. G. (2006). Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Global Change Biology, 12, 311–324.

    Article  Google Scholar 

  • Shim, H., Chauhan, S., Ryoo, D., Bowers, K., Thomas, S. M., Canada, K. A., Burken, J. G., & Wood, T. K. (2000). Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Applied & Environmental Microbiology, 66, 4673–4678.

    Article  CAS  Google Scholar 

  • Trapp, S., Cammarano, A., Capri, E., Reichenberg, F., & Mayer, P. (2007). Diffusion of PAH in potato and carrot slices and application for a potato model. Environmental Science & Technology, 41, 3103–3108.

    Article  CAS  Google Scholar 

  • Travis, E. R., Hannink, N. K., Van Der Gast, C. J., Thompson, I. P., Rosser, S. J., & Bruce, N. C. (2007). Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environmental Science & Technology, 41, 5854–5861.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. 1993. Guidance for evaluating the technical impracticability of groundwater restoration, interim final, EPA Directive 9234.2–25.

    Google Scholar 

  • Widdowson, M. A., Shearer, S., Andersen, R. G., & Novak, J. T. (2005a). Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environmental Science & Technology, 39, 1598–1605.

    Article  CAS  Google Scholar 

  • Witte, H., Langenohl, T., & Offenbacher, G. (1988). Investigation of the entry of organic pollutants into soils and plants through the use of sewage sludge in agriculture. Korrespndenz Abwasser, 13, 118–136.

    Google Scholar 

  • Yee, D. C., Maynard, J. A., & Wood, T. K. (1998). Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Applied & Environmental Microbiology, 64, 112–118.

    CAS  Google Scholar 

  • Yoon, J. M., van Aken, B., & Schnoor, J. L. (2006). Leaching of contaminated leaves following uptake and phytoremediation of RDX. HMX, and TNT by poplar: International Journal of Phytoremediation, 8, 81–89.

    Article  CAS  Google Scholar 

  • Seuss, Dr., 1971, The Lorax, Random House, Inc., New York.

    Google Scholar 

  • Groom, C.A., Halasz, A., Paquet, L., Morris, N., Oliver, L., Dubois, C., and Hawari, J., 2002, Accumulation of HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing range soil: Environmental Science & Technology (36):112–118.

    Google Scholar 

  • Witherspoon, J.P., Jr., 1964, Cycling of cesium-134 in white oak trees: Ecological Monograph (34):403–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Landmeyer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Landmeyer, J.E. (2012). Economic and Regulatory Factors That Affect the Phytoremediation of Contaminated Groundwater. In: Introduction to Phytoremediation of Contaminated Groundwater. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1957-6_16

Download citation

Publish with us

Policies and ethics