Skip to main content

Monitoring for Phytoremediation of Groundwater Contamination

  • Chapter
  • First Online:
Introduction to Phytoremediation of Contaminated Groundwater

Abstract

In 1977, the Federal Water Pollution Control Act was amended as the Clean Water Act (CWA). In general, the CWA provides for the regulation of the release of contaminants to water. This regulation is monitored by the USEPA by effluent standards, and permits are required to ensure the discharge of acceptable levels of wastes. The CWA covers contaminant levels that affect aquatic life and recreational standards, although the CWA affects drinking-water quality by proxy. In 1974, the Safe Drinking Water Act (SDWA) was enacted to regulate the quality of drinking water, either existing or potential sources of surface or groundwater. This regulation also is monitored by the USEPA through water-quality standards, and municipalities are required by law to treat drinking water to these standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, G., & Duncan, H. J. (1999). Effect of diesel fuel on growth of selected plant species. Environmental Geochemistry and Health, 21, 353–357.

    Article  CAS  Google Scholar 

  • Adams, R. G., Lomann, R., Fernandez, L. A., Macfarlane, J. K., & Gschwend, P. M. (2007). Polyethylene devices: passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environmental Science & Technology, 41, 1317–1323.

    Article  CAS  Google Scholar 

  • Alterio, G., Giorrio, P., & Sorrention, G. (2006). Open-system chamber for measurement of gas exchanges at plant level. Environmental Science & Technology, 40, 1950–1955.

    Article  CAS  Google Scholar 

  • Anderson, M. S., Lakin, H. W., Beeson, K. C., Smith, F. F., Thacker, E. 1961. Selenium in agriculture. (Agriculture handbook 200, 65 p.). Washington, DC: U.S. Department of Agriculture, Agricultural Research Service.

    Google Scholar 

  • Andraski, B. J., Sandstrom, M. W., Michel, R. L., Radyk, J. C., Stonestrom, D. A., Johnson, M. J., & Mayers, C. J. (2003). Simplified method for detecting tritium contamination in plants and soil. Journal of Environmental Quality, 32, 988–995.

    Article  CAS  Google Scholar 

  • Andraski, B. J., Stonestrom, D. A., Michel, R. L., Halford, K. J., & Radyk, J. C. (2005). Plant-based plume-scale mapping of tritium contamination in desert soils. Vadose Zone Journal, 4, 819–827.

    Article  CAS  Google Scholar 

  • Arnold, C. W., Parfitt, D. G., & Kaltreider, M. (2007). Phytovolatilization of oxygenated gasoline-impacted groundwater at an underground storage tank site via conifers. International Journal of Phytoremediation, 9, 53–69.

    Article  CAS  Google Scholar 

  • Brigmon, R. L., Anderson, T. A., & Fliermans, C. B. (1999). Methanotrophic bacteria in the rhizosphere of trichloroethylene-degrading plants. International Journal of Phytoremediation, 1, 241–253.

    Article  CAS  Google Scholar 

  • Bromilow, R. H., & Chamberlain, K. (1995). Principles governing uptake and transport of chemicals. In S. Trapp & J. C. McFarlane (Eds.), Plant Contamination, modeling and simulation of organic chemical processes (pp. 37–68). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Burken, J. G., & Ma, X. (2006). Phytoremediation of volatile organic compounds. In M. Mackova, D. N. Dowling, & T. Macek (Eds.), Phytoremediation and Rhizoremediation: Theoretical Background (pp. 199–216). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Carsel, R. F., Smith, C. N., Mulkey, L. A., Dean, J. D., Jowsie, P. 1984. User’s manual for the Pesticide Root Zone Model (PRZM). US EPA 600/3–84–109. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory.

    Google Scholar 

  • Cook, R. L., Landmeyer, J. E., Atkinson, B., Messier, J. P., & Nichols, E. G. (2010). Field note: Successful establishment of a phytoremediation system at a petroleum hydrocarbon contaminated shallow aquifer: trends, trials, and tribulations. International Journal of Phytoremediation, 12(7), 716–732.

    Article  Google Scholar 

  • Doucette, W. J., Bugbee, B., Hayhurst, S., Plaehn, W. A., Downey, S. A., Taffinder, S. A., & Edwards, S. A. (1998). Phytoremediation of dissolved-phase trichloroethylene using mature vegetation. In G. B. Wickramanayake & R. E. Hinchee (Eds.), Bioremediation and phytoremediation (chlorinated and recalcitrant compounds, pp. 251–156). Columbus, OH: Battelle Press.

    Google Scholar 

  • Ferrieri, A. P., Thorpe, M. R., & Ferrieri, R. A. (2006). Stimulating natural defenses in poplar clones (OP–367) increases plant metabolism of carbon tetrachloride. International Journal of Phytoremediation, 8, 233–243.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, G., Negri, M. C., Minsker, B. S., & Werth, C. J. (2007). Monitoring subsurface contamination using tree branches. Groundwater Monitoring & Remediation, 27, 65–74.

    Article  CAS  Google Scholar 

  • Gough, L. P., Shacklette, H. T., Case, A. A. 1979. Element concentrations toxic to plants, animals, and man (U.S. Geological Survey Bulletin 1466, 80 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Grissino-Mayer, H. D. (2003). A manual and tutorial for the proper use of an increment borer. Tree-Ring Research, 59(2), 63–79.

    Google Scholar 

  • Helley, E. J., LaMarche Jr. V. (1973). Historic flood information for northern California streams from geologic and botanical evidence (U.S.Geological Survey Professional Paper 485–E, 16 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Hem, J. D. (1967). Composition of saline residues on leaves and stems of saltcedar (Tamarix pentandra Pallas) (U.S. Geological Survey Professional Paper 491–C, 9 p.). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Hesslein, R. H. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography, 21, 912–914.

    Article  CAS  Google Scholar 

  • Jackson, W. A., Martino, L., Hirsch, S., Wrobel, J., & Pardue, J. H. (2005). Application of a dialysis sampler to monitor phytoremediation processes. Environmental Monitoring and Assessment, 107, 155–171.

    Article  CAS  Google Scholar 

  • Jordahl, J. L., Foster, L., Schnoor, J. L., & Alvarez, P. J. J. (1997). Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environmental Toxicology and Chemistry, 16, 1318–1321.

    Article  CAS  Google Scholar 

  • Kalisz, P. J., Stringer, J. W., Volpe, J. A., & Clark, D. T. (1988). Trees as monitors of tritium in soil water. Journal of Environmental Quality, 17, 62–70.

    Article  CAS  Google Scholar 

  • Landmeyer, J. E., & Stone, P. A. (1995). Radiocarbon and δ13C values related to groundwater recharge and mixing. Groundwater, 33, 227–234.

    CAS  Google Scholar 

  • Landmeyer, J. E., Chapelle, F. H., Petkewich, M. D., & Bradley, P. M. (1996a). Assessment of natural attenuation of aromatic hydrocarbons in groundwater near a former manufactured gas plant. South Carolina, USA: Environmental Geology, 34, 279–292.

    Google Scholar 

  • Landmeyer, J. E., Pankow, J. F., Chapelle, F. H., Bradley, P. M., Church, C. D., & Tratnyek, P. G. (1998b). Fate of MTBE relative to benzene in a gasoline-contaminated aquifer (1993–98). Groundwater Monitoring and Remediation, 18, 93–102.

    Article  CAS  Google Scholar 

  • Landmeyer, J. E., Vroblesky, D. A., Bradley, P. M. (2000). MTBE and BTEX in trees above gasoline-contaminated groundwater. In: G. B. Wickramanayake, A. R. Gavaskar, J. T. Gibbs, J. L. Means (Eds.), Case studies in the remediation of chlorinated and recalcitrant compounds. The second international conference on remediation of chlorinated and recalcitrant compounds, Monterey, California, May 22–25, 2000 (pp. 17–24).Columbus, OH: Battelle Press.

    Google Scholar 

  • Larsen, M., Burken, J., Machackova, J., Karlson, U. G., Trapp, S. (2008). Using tree core samples to monitor natural attenuation and plume distribution after a PCE spill. Environmental Science & Technology, 42(5), 1711–1717. ASAP Article Web Release Date 1/31/08.

    Google Scholar 

  • Ma, X. M., & Burken, J. G. (2002). VOCs fate and partitioning in vegetation: Use of tree cores in groundwater analysis. Environmental Science & Technology, 36, 4663–4668.

    Article  Google Scholar 

  • Ma, X. M., & Burken, J. G. (2003). TCE diffusion to the atmosphere in phytoremediation applications. Environmental Science & Technology, 37, 2534–2539.

    Article  CAS  Google Scholar 

  • Ma, X. M., & Burken, J. G. (2004). Modeling of TCE diffusion to the atmosphere and distribution in plant stems. Environmental Science & Technology, 38, 4580–4586.

    Article  CAS  Google Scholar 

  • Martin, R. S., Villanueva, I., Zhang, J., & Popp, C. J. (1999). Nonmethane hydrocarbon, monocarboxylic acid, and low molecular weight aldehyde and ketone emissions from vegetation in central New Mexico. Environmental Science & Technology, 33, 2186–2192.

    Article  CAS  Google Scholar 

  • McClenahen, J. R., Vimmerstedt, J. P., & Scherzer, A. J. (1989). Elemental concentrations in tree rings by PIXIE: statistical variability, mobility, and effects of altered soil chemistry. Canadian Journal of Forest Research, 19, 880–888.

    Article  CAS  Google Scholar 

  • McFarlane, C., Pfleeger, T., & Fletcher, J. (1990). Effect, uptake and disposition of nitrobenzene in several terrestrial plants. Environmental Toxicology and Chemistry, 9, 513–520.

    Article  CAS  Google Scholar 

  • Neitch, C. T., Morris, J. T., & Vroblesky, D. A. (1999). Biophysical mechanisms of trichloroethene uptake and loss in bald cypress growing in shallow contaminated groundwater. Environmental Science & Technology, 33, 2899–2904.

    Article  Google Scholar 

  • Phipps, R.L. 1967. Annual growth of a suppressed chestnut oak and red maple, a basis for hydrologic inference: U.S. Geological Survey Professional Paper 485–C, 27 p.

    Google Scholar 

  • Phipps, R.L. 1985. Collecting, preparing, crossdating, and measuring tree increment cores: U.S. Geological Survey Water-Resources Investigations Report 85–4148, 48 p.

    Google Scholar 

  • Phipps, R.L., Ireley, D.L., and Baker, C.P. 1978. Tree rings as indicators of hydrologic change in the Great Dismal Swamp, Virginia and North Carolina: U.S. Geological Survey Water-Resources Investigations Report 78–136, 26 p.

    Google Scholar 

  • Pitterle, M. T., Andersen, R. G., Novak, J. T., & Widdowson, M. A. (2005). Push-pull tests to quantify in situ degradation rates at a phytoremediation site. Environmental Science & Technology, 39, 9317–9323.

    Article  CAS  Google Scholar 

  • Schumacher, J.G., Stuckhoff, G.C., and Burken, J.G. 2004. Assessment of subsurface chlorinated solvent contamination using tree cores at the Front Street Site and a former dry cleaning facility at the Riverfront Superfund Site, New Haven, Missouri, 1999–2003: U.S. Geological Survey Scientific Investigations Report 2004–5049, 35 p.

    Google Scholar 

  • Shaw, G., Nichols, E. G., Cook, R., Fetzer, B., Messier, J. P., & Atkinson, B. (2010). The impact of trees on groundwater hydrology and jet-fuel contamination: Proceedings of the 7 th International Conference on Remediation of Chlorinated and Recalcitrant Compounds. CA, USA, May: Monterey. 2010.

    Google Scholar 

  • Sheppard, J. C., & Funk, W. H. (1975). Trees as environmental sensors monitoring long-term heavy metal contamination of Spokane River. Idaho: Environmental Science & Technology, 9, 638–642.

    Article  CAS  Google Scholar 

  • Sorek, A., Atzmon, N., Dahan, O., Gerstl, Z., Kushisin, L., Laor, Y., Mingelgrin, U., Nasser, A., Ronen, D., Tsechansky, L., Weisbrod, N., & Graber, E. R. (2008). “Phytoscreening”: The use of trees for discovering subsurface contamination by VOCs. Environmental Science & Technology, 42, 536–542.

    Article  CAS  Google Scholar 

  • Steinberg, S. L., McFarland, M. J., & Worthington, J. W. (1990b). Comparison of trunk andbranch sap flow with canopy transpiration in pecan. Journal of Experimental Botany, 41, 653–659.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency. 2008. A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA): EPA 600/R-08/148.

    Google Scholar 

  • Vroblesky, D. A., & Yanosky, T. M. (1990). Use of tree-ring chemistry to document historical groundwater contamination events. Groundwater, 28, 677–684.

    Google Scholar 

  • Vroblesky, D. A., Yanosky, T. M., & Siegel, F. R. (1992). Increased concentrations of potassium in heartwood of trees in response to groundwater contamination. Environmental Geology and Water Science, 19, 71–74.

    Article  CAS  Google Scholar 

  • Vroblesky, D. A., Nietch, C. T., & Morris, J. T. (1999a). Chlorinated ethenes from groundwater in tree trunks. Environ. Science & Technol., 33, 510–515.

    Article  CAS  Google Scholar 

  • Vroblesky, D.A., Nietch, C.T., Robertson, J.F., Bradley, P.M., Coates, J., and Morris, J.T. 1999. Natural attenuation potential of chlorinated volatile organic compounds in groundwater, TNX flood plain, Savannah River Site, South Carolina: U.S. Geological Survey Water-Resources Investigations Report 99–4071, 43 p.

    Google Scholar 

  • Vroblesky, D.A., Clinton, B.D., Vose, J.M., Casey, C.C., Harvey, G.J., and Bradley, P.M. 2004. Groundwater chlorinated ethenes in tree trunks: case studies, influence of recharge, and potential degradation mechanisms: Groundwater Monitoring & Remediation (24):124–138.

    Google Scholar 

  • Weyers, J., & Meidner, H. (1990). Methods in stomata research: Longman Scientific and Technical. London: Essex.

    Google Scholar 

  • Widdowson, M. A., Shearer, S., Andersen, R. G., & Novak, J. T. (2005a). Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environmental Science & Technology, 39, 1598–1605.

    Article  CAS  Google Scholar 

  • Widdowson, M.A., Al-Sayed, A., Hester, E., and Landmeyer, J.E. 2005b. SEAM3D – Plant Uptake Package (PUP). A numerical model for 3-D transport coupled to sequential electron-acceptor-based biodegradation reactions in groundwater, Documentation and Users Guide. Virginia Tech.

    Google Scholar 

  • Wilson, K. J. (1995). Molecular techniques for the study of rhizobial ecology in the field. Soil biology & Biochemistry, 27, 501–514.

    Article  CAS  Google Scholar 

  • Yanosky, T.M., and Vroblesky, D.A. 1992. Relation of nickel concentrations in tree rings to groundwater contamination: Water Resources Research (28):2077–2083.

    Google Scholar 

  • Yanosky. T.M., and Vroblesky, D.A. 1995. Element analysis of tree rings in groundwater contamination studies In Tree Rings as Indicators of Ecosystem Health, Lewis, T.E. ed., CRC Press, Boca Raton, FL; 177–205.

    Google Scholar 

  • Zimmermann, U. (1989). Water relations of plant cells: Pressure probe technique. Methods in Enzymology, 174, 338–366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Landmeyer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Landmeyer, J.E. (2012). Monitoring for Phytoremediation of Groundwater Contamination. In: Introduction to Phytoremediation of Contaminated Groundwater. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1957-6_15

Download citation

Publish with us

Policies and ethics