Skip to main content

Chemical and Physical Properties That Affect the Interaction Between Plants and Contaminated Groundwater

  • Chapter
  • First Online:
Introduction to Phytoremediation of Contaminated Groundwater
  • 1789 Accesses

Abstract

This short summary of a true story received national media attention in January 2000 on the TV show “60min.” Although this specific incident occurred in California, the scenario could have occurred at any of the 400,000 leaky USTs across the United States in which gasoline that contained MTBE may have been stored. A leaky UST that contains gasoline enhanced with the fuel oxygenate MTBE can be accidentally released to the subsurface through corrosion in the joints of underground piping. After escape from the UST, gasoline as pure free product can migrate through the pore spaces of the unsaturated zone under the influence of gravity until it encounters the water-table surface. There, the lighter specific gravity of the gasoline will cause it to float on the water table as a separate phase. MTBE, and other gasoline compounds such as benzene, will then partition between the gasoline source itself and the air present in the unsaturated zone above the free product, the water present in the unsaturated zone as well as the water table, and the organic matter present in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, R. G., Booth, E. C., Marr, L. C., Widdowson, M. A., & Noval, J. T. (2008). Volatilzation and biodegradation of naphthalene in the vadose zone impacted by phytoremediation. Environmental Science & Technology, 42, 2575–2581.

    Article  Google Scholar 

  • Armstrong, W. (1968). Oxygen diffusion from the roots of woody species. Physiologia Plantarum, 20, 539–543.

    Article  Google Scholar 

  • Baduru, K. K., Trapp, S., & Burken, J. G. (2008). Direct measurement of VOC diffusivities in tree tissues: Impacts on tree-based phytoremediation and plant contamination. Environmental Science & Technology, 42, 1268–1275.

    Article  CAS  Google Scholar 

  • Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., Vangronsveld, J., & van der Lelie, D. (2004). Engineered endophytic bacteria improve phytoremediation of water soluble volatile organic pollutants: Nature Biotechnology, 22(5), 583–588.

    CAS  Google Scholar 

  • Bornstein, J., Benoit, G. R., Scott, F. R., Hepler, P. R., & Hedstrom, W. E. (1984). Alfalfa growth and soil oxygen diffusion as influenced by depth to water table. Soil Science Society of America, 48, 1165–1169.

    Article  Google Scholar 

  • Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C., & Broll, G. (2006). Potential of Vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. International Journal of Phytoremediation, 8, 273–284.

    Article  CAS  Google Scholar 

  • Briggs, G. G., Bromilow, R. H., & Evans, A. A. (1982). Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pesticide Science, 13, 495–504.

    Article  CAS  Google Scholar 

  • Brigmon, R. L., Bell, N. C., Freedman, D. L., & Berry, C. J. (1998). Natural attenuation of trichloroethylene in rhizosphere soils at the Savannah River Site. Journal of Soil Contamination, 7, 433–453.

    Article  CAS  Google Scholar 

  • Brix, H. (1990). Uptake and photosynthetic utilization of sediment-derived carbon by Phragmites australis (Cav.) Trin. Ex Steudal. Aquatic Botany, 38, 377–389.

    Article  Google Scholar 

  • Burken, J. G. (2003). Uptake and metabolism of organic compounds: Green-liver model. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and Control of Contaminants (pp. 59–84). Hoboken, NJ: Wiley Interscience, Inc.

    Google Scholar 

  • Burken, J. G., & Schnoor, J. L. (1998). Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science & Technology, 32, 3379–3385.

    Article  CAS  Google Scholar 

  • Burken, J. G., & Schnoor, J. L. (1999). Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. International Journal of Phytoremediation, 1, 139–151.

    Article  CAS  Google Scholar 

  • Chanton, J. P., Whiting, G. J., Happell, J. D., & Gerard, G. (1993). Contrasting rates and diurnal patterns of methan emission from emergent aquatic macrophytes. Aquatic Botany, 46, 111–128.

    Article  CAS  Google Scholar 

  • Chiou, C. T. (2002). Partition and adsorption of organic contaminants in environmental systems:. Hoboken, NJ: John Wiley & Sons, Inc. 257 p.

    Book  Google Scholar 

  • Chiou, C. T., Sheng, G., & Manes, M. (2001). A partition-limited model for the plant uptake of organic contaminants from soil and water. Environmental Science & Technology, 35, 1437–1444.

    Article  CAS  Google Scholar 

  • Cho, C., Sung, K., Caopcioglu, M. Y., & Drew, M. (2005). Influence of water content and plants on the dissipation of chlorinated volatile organic compounds in soil: Water. Air, and Soil Pollution, 167, 259–271.

    Article  CAS  Google Scholar 

  • Collins, C. D., & Fryer, M. E. (2003). Model intercomparison for the uptake of organic chemicals by plants. Environmental Science & Technology, 37, 1617–1624.

    Article  CAS  Google Scholar 

  • Collins, C. D., Fryer, M., & Grosso, A. (2006). Plant uptake of non-ionic organic chemicals. Environmental Science & Technology, 40, 45–52.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56, 55–114.

    Article  CAS  Google Scholar 

  • Davis, L. C., Vanderhoof, S., Dana, J., Selk, K., Smith, K., Golpen, B., & Erickson, L. E. (1998). Movement of chlorinated solvents and other volatile organics through plants monitored by fourier transform infrared (FT-IR) spectrometry. Journal of Hazardous Waste Research, 1, 1–26.

    Google Scholar 

  • Donnelly, P. K., Hedge, R. S., & Fletcher, J. S. (1994). Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere, 28, 981–988.

    Article  Google Scholar 

  • Eberts, S. M., Jones, S. A., Braun, C. L., & Harvey, G. J. (2005). Long-term changes in groundwater chemistry at a phytoremediation demonstration site. Groundwater, 43, 178–186.

    CAS  Google Scholar 

  • Federle, T. W., & Ventullo, R. M. (1990). Mineralization of surfactants by the microbiota of submerged plant detritus. Applied & Environmental Microbiology, 56, 333–339.

    CAS  Google Scholar 

  • Ferrieri, A. P., Thorpe, M. R., & Ferrieri, R. A. (2006). Stimulating natural defenses in poplar clones (OP–367) increases plant metabolism of carbon tetrachloride. International Journal of Phytoremediation, 8, 233–243.

    Article  CAS  Google Scholar 

  • Gijsman, A. J., Floris, J., Noordwijk, M. V., & Brouwer, G. (1991). An inflatable minirhizotron system for root observations with improved soil/tube contact. Plant and Soil, 134, 261–269.

    Article  Google Scholar 

  • Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y. Y., & Raskin, I. (1999). Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Science, 96, 5973–5977.

    Article  CAS  Google Scholar 

  • Godsy, E. M., Warren, E., & Paganelli, V. V. (2003). The role of microbial reductive dechlorination of TCE at a phytoremediation site. International Journal of Phytormediation, 5, 73–87.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, G., Negri, M. C., Minsker, B. S., & Werth, C. J. (2007). Monitoring subsurface contamination using tree branches. Groundwater Monitoring & Remediation, 27, 65–74.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, G., Burken, J. G., & Werth, C. J. (2009). Lignin and lipid impact on sorption and diffusion of trichloroethylene in tree branches for determining contaminant fate during plant sampling and phytoremediation. Environmental Science & Technology, 43, 5732–5738.

    Article  CAS  Google Scholar 

  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.

    Article  CAS  Google Scholar 

  • Hansch, C., & Leo, A. (1979). Substituent constant for correalation analysis in chemistry and biology. New York: Wiley-Interscience. 339 p.

    Google Scholar 

  • Hiratsuka, Y. (1987). Forest tree diseases of the prairie provinces. Edmonton, AB: Northern Forestry Centre.

    Google Scholar 

  • Hsu, T. S., & Bartha, R. (1979). Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Appled Environmental Microbiology, 37, 36–41.

    CAS  Google Scholar 

  • Jordahl, J. L., Foster, L., Schnoor, J. L., & Alvarez, P. J. J. (1997). Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environmental Toxicology and Chemistry, 16, 1318–1321.

    Article  CAS  Google Scholar 

  • Kamath, R., Schnoor, J. L., & Alvarez, P. J. J. (2004). Effect of root-derived substrates on the expression of nah-lux genes in pseudomas fluorescens HK44: Implications for PAH biodegradation in the rhizosphere. Environmental Science & Technology, 38, 1740–1745.

    Article  CAS  Google Scholar 

  • Keeley, J. E., Osmond, C. B., & Raven, J. A. (1984). Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature, 310, 694–695.

    Article  CAS  Google Scholar 

  • Knaebel, D. B., Vestal, J. R. (1994). Intact rhizosphere microbial communities used to study microbial biodegradation in agricultural and natural soils. In: T. A. Anderson, J. R. Coats (Eds.), Bioremediation through rhizosphere technology (Chap. 5, ACS Symposium Series 563, pp. 56–69). Washington, DC: American Chemical Society.

    Google Scholar 

  • Komives, T., Gullner, G., Rennenberg, H., & Casida, J. E. (2003). Ability of poplar (Populus spp.) to detoxify chloroacetanilide herbicides. Water, Air, and Soil Pollution: Focus, 3, 277–283.

    Article  CAS  Google Scholar 

  • Kooistra, M. J., Schoonderbeek, D., Boone, F. R., & Veen, B. W. (1992). Root-soil contact of maize, as measured by a thin-section technique. II Effects of soil compaction: Plant Soil, 139, 119–129.

    Google Scholar 

  • Kozlowski, T. T. (1997). Responses of woody plants to flooding and salinity. Tree Physiology Monograph, 1, 1–29.

    Google Scholar 

  • Kramer, P. J., Riley, W. S., & Bannister, T. T. (1952). Gas exchange of cypress knees. Ecology, 33, 117–121.

    Article  CAS  Google Scholar 

  • Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Biochemical mechanisms of detoxification in higher plants: Springer. Heidelberg: Germany.

    Google Scholar 

  • Lahvis, M. A., Baehr, A. L., & Baker, R. J. (1999). Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions. Water Resources Reseach, 35, 753–765.

    Article  CAS  Google Scholar 

  • Leo, A., Hansch, C., & Church, C. (1969). Comparison of parameters currently used in the study of structure-activity relationships. Journal of Medical Chemistry, 12, 766–771.

    Article  CAS  Google Scholar 

  • Li, H., Sheng, G., Chiou, C. T., & Xu, O. (2005). Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environmental Science & Technology, 39, 4864–4870.

    Article  CAS  Google Scholar 

  • Lichtenstein, E. P. (1959). Absorption of some chlorinated hydrocarbon insecticides from soils into various crops. Journal of Agriculture and Food Chemicals, 7, 430–433.

    Article  CAS  Google Scholar 

  • Luther, G. W., III, Kostka, J. E., Church, T. M., Sulzberger, B., & Stumm, W. (1992). Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Marine Chemistry, 40, 81–103.

    Article  CAS  Google Scholar 

  • Ma, X. M., & Burken, J. G. (2002). VOCs fate and partitioning in vegetation: Use of tree cores in groundwater analysis. Environmental Science & Technology, 36, 4663–4668.

    Article  Google Scholar 

  • Ma, X. M., & Burken, J. G. (2003). TCE diffusion to the atmosphere in phytoremediation applications. Environmental Science & Technology, 37, 2534–2539.

    Article  CAS  Google Scholar 

  • McCutcheon, S. C., & Schnoor, J. L. (Eds.). (2003). Phytoremediation–Transformation and control of contaminants:. Hoboken: Wiley-Interscience, Inc. 987 p.

    Google Scholar 

  • McCutcheon, S. C., Medina, V. F., & Larson, S. L. (2003). Proof of phytoremediation for explosives in water and soil in Phytoremediation - Transformation and control of contaminants (pp. 429–480). Hoboken, N.J: Wiley-Interscience, Inc.

    Google Scholar 

  • Michaud, S.C., and Richardson, C.J. 1989. Relative radial oxygen loss in five wetland plants: In Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural, D.A. Hammer, ed. Lewis Publishers, Inc., Chelsea, MI; Chapter 38, 501–507

    Google Scholar 

  • Miller, M. H., Mamaril, C. P., & Blair, G. J. (1970). Ammonium effects on phosphorus absorption through pH changes and phosphorus precipitation, at the soil-root interface. Journal of Agronomy, 62, 524–527.

    Article  CAS  Google Scholar 

  • Newman, L. A., Strand, S. E., Duffy, J., Ekuan, G., Raszaj, M., Shurtleff, B., Wilmoth, J., Heilman, P., & Gordon, M. (1997). Uptake and biotransformation of trichloroethylene by hybrid poplars. Environmental Science & Technology, 31, 1062–1067.

    Article  CAS  Google Scholar 

  • Nichols, T. D., Wolf, D. C., Rogers, H. B., Beyrouty, C. A., & Reynolds, C. M. (1997). Rhizosphere microbial populations in contaminated soils: Water. Air, and Soil Pollution, 95, 165–178.

    CAS  Google Scholar 

  • Noctor, G., Arisi, A. M., Jouanin, L., Kunert, K. J., Rennenberg, H., & Foyer, C. H. (1998). Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49, 249–270.

    Article  CAS  Google Scholar 

  • Paterson, S., and Mackay, D. 1995. Interpreting chemical partitioning in soil-plant-air systems with a fugacity model in Plant Contamination – Modeling and Simulation of Organic Chemical Processes, S. Trapp, and C. McFarlane, eds, CRC Press, Inc., Boca Raton, FL, USA.

    Google Scholar 

  • Purvis, A. C. (1997). Role of the alternative oxidase in limiting superoxide production by plant mitocondria. Plant Physiology, 100, 165–170.

    Article  CAS  Google Scholar 

  • Raven, J.A., Handley, L.L., Macfarlane, J.J., McInroy, S., McKenzie, L., Richlands, J.H., and Samuelsson, G. 1987. Tansley Review No. 13: The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form: a review, with new data on Ericaulon decangulare l. ANP, 125–148.

    Google Scholar 

  • Reilley, K. A., Banks, M. K., & Schwab, A. P. (1996). Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. Journal of Environmental Quality, 25, 212–219.

    Article  CAS  Google Scholar 

  • Rentz, J. A., Chapman, B., Alvarez, J. J., & Schnoor, J. L. (2003). Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments. International Journal of Phytoremediation, 5, 57–72.

    Article  CAS  Google Scholar 

  • Riederer, M. 1995. Partitioning and transport of organic chemicals between the atmospheric environment and leaves in Plant Contamination – Modeling and Simulation of Organic Chemical Processes, S. Trapp, and C. McFarlane, eds, CRC Press, Inc., Boca Raton, FL, USA.

    Google Scholar 

  • Sandermann, H., Jr. (1994). Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmocogenetics, 4, 225–241.

    Article  CAS  Google Scholar 

  • Sandermann, H., Diesperger, H., and Scheel, D. 1977. Metabolism of xenobiotics by plant cell cultures, in Plant Tissue Culture and Its Biotechnological Application (w. Barz, E. Reinhard, and M.H. Zenk, eds): Springer-Verlag, Berlin, 178 p.

    Google Scholar 

  • Schnoor, J.L. 1997. Phytoremediation. Ground-Water Remediation Technology Analysis Center Technology Evaluation Report TE–98–01.

    Google Scholar 

  • Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environmental Science & Technology, 29, 318–323.

    Article  Google Scholar 

  • Scholander, P. F., van Dam, L., & Scholander, S. I. (1955). Gas exchange in the roots of mangroves. American Journal of Botany, 42, 92–98.

    Article  CAS  Google Scholar 

  • Schröder, P., & Collins, C. (2002). Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. International Journal of Phytoremediation, 4, 247–265.

    Article  Google Scholar 

  • Shang, T. Q., Newman, L. A., & Gordon, M. P. (2003). Fate of trichloroethylene in terrestrial plants. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: transformation and control of contaminants: Wiley-Interscience (pp. 529–560). NJ: Hoboken.

    Google Scholar 

  • Shone, M. G. T., & Wood, A. V. (1974). A comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by barley: I. Absorption in relation to physico-chemical properties: Journal of Experimental Botany, 25, 390–400.

    CAS  Google Scholar 

  • Siciliano, S. D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., Ouellette, D., Roy, R., Whyte, L. G., Banks, M. K., Schwab, P., Lee, K., & Greer, C. W. (2001). Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Applied & Environmental Microbiology, 67, 2469–2475.

    Article  CAS  Google Scholar 

  • Singer, A.C. 2006. The chemical ecology of pollutant biodegradation, in M. Mackova, D.N. Dowling, and T. Macek (eds) Phytoremediation Rhizoremediation, 5–21.

    Google Scholar 

  • Skelton, N. J., & Allaway, W. G. (1996). Oxygen and pressure changes measured in situ during flooding in roots of the Grey Mangrove Avicennia marina (Forssk.) Vierh. Aquatic Botany, 54, 165–175.

    Article  Google Scholar 

  • Sorey, M.L., Farrar, C.D., Gerlack, T.M., McGee, K.A., Evans, W.C., Colvard, E.M., Hill, D.P., Bacley, R.A., Rogie, J.D., Hendley, J.W., II., and Stauffer, P.H. 2000. Invisible CO2 gas killing trees at Mammoth Mountain, California: U.S. Geological Survey Fact Sheet 172–96, version 2.0, 2 p.

    Google Scholar 

  • Strand, S. E., G. A. Walter and H. D. Stensel. 1995. Effect of trichloroethylene loading on mixed methanotrophic community stability. Bioremediation of Chlorinated Solvents. (Eds): R. E. Hinchee, A. Leeson and L. Semprini, Columbus, Ohio, Battelle Press. 161–168.

    Google Scholar 

  • Struckhoff, G. C., Burken, J. G., & Schumacher, J. G. (2005). Vapor-phase exchange of perchloroethene between soil and plants. Environmental Science & Technology, 39, 1563–1568.

    Article  CAS  Google Scholar 

  • Taghavi, S., Barac, T., Greenberg, B., Borremans, B., Vangronsveld, J., & van der Lelie, D. (2005). Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Applied & Environmental Microbiology, 71, 8500–8505.

    Article  CAS  Google Scholar 

  • Tao, S., Xu, F., Liu, W., Cui, Y., & Coveney, R. (2006). A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter. Environmental Science & Technology, 40, 2219–2224.

    Article  CAS  Google Scholar 

  • Taylor, H. M., Upchurch, D. R., & McMichael, B. L. (1990). Applications and limitations of rhizotrons and minirhizotrons for root studies. Plant and Soil, 129, 29–35.

    Article  Google Scholar 

  • Thompson, P. L., Ramer, L. A., Guffey, A. P., & Schnoor, J. L. (1998a). Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Envioronmental Toxicology & Chemistry, 17, 902–906.

    Article  CAS  Google Scholar 

  • Trapp, S. (1995). Model for uptake of xenobiotics into plants in Plant Contamination Modeling and Simulation of Organic Chemical Processes (S. Trapp and J.C. McFarlane, eds): CRC Press (pp. 107–152). FL: Inc. Boca Raton.

    Google Scholar 

  • Trapp, S. (2002). Dynamic root uptake model for neutral lipophilic organics. Environmental Toxicology & Chemistry, 21, 203–206.

    Article  CAS  Google Scholar 

  • Trapp, S. 2003. Plant uptake and transport models for neutral and ionic chemicals: Environmental Science & Pollution Research (OnlineFirst):1–7.

    Google Scholar 

  • Trapp, S., McFarlane, J. C., & Matthies, M. (1994). Model for uptake of xenobiotics into plants – validation with bromocil experiments. Environmental Toxicology & Chemistry, 13, 413–422.

    Article  CAS  Google Scholar 

  • Trapp, S., Köhler, A., Larsen, L. C., Zambrano, K. C., & Karlson, U. (2001b). Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. Journal of Soils and Sediments, 2, 71–76.

    Article  Google Scholar 

  • Trapp, S., Rasmussen, D., and Samsøe-Petersen, L. 2003. Fruit tree model for uptake of organic contaminants from soil. SAR–QSAR Environmental Research 14:17–26.

    Google Scholar 

  • Travis, C., & Arms, A. (1988). Bioconcentration in beef, milk and vegetation. Environmental Science & Technology, 22, 271–274.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. 2003. Phytoremediation of groundwater at Air Force Plant 4, Carswell, Texas, Innovative Technology Evaluation Report: EPA/540/R–03/506.

    Google Scholar 

  • von Sachs, J. 1875. Textbook of Botany, English translation edition, Oxford, Oxford University Press

    Google Scholar 

  • Vosátka, M., Rydlová, J, Sudová, R., and Vohnίk, M. 2006. Mycorrhizal fungi as helping agents in phytoremediation of degraded and contaminated soils, in M. Mackova, D.N. Dowling, and T. Macek (eds) Phytoremediation Rhizoremediation, 237–257.

    Google Scholar 

  • Vuorinen, A. H., Vapaavuori, E. M., & Lapinjoki, S. (1989). Time-course of uptake of dissolved inorganic carbon through willow roots in light and in darkness. Physiologia Plantarum, 77, 33–38.

    Article  CAS  Google Scholar 

  • Walton, B.T., Hoylman, A.M., Perez, M.M., Anderson, T.A., Johnson, T.R., Guthrie, E.A., and Christman, R.F. 1994. Rhizosphere microbial communities as a plant defense against toxic substances in soils: In Bioremediation Through Rhizosphere Technology, T.A. Anderson, and J.R. Coats, eds, ACS Symposium Series no 563, pp 82–92.

    Google Scholar 

  • Whiting, G. J., & Chanton, J. P. (1996). Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms. Aquatic Botany, 54, 237–253.

    Article  CAS  Google Scholar 

  • Wießner, A., Kuschk, P., Kästner, M., & Stottmeister, U. (2002). Abilities of helophyte species to release oxygen into rhizospheres with varying redox conditions in laboratory-scale hydroponic systems. International Journal of Phytoremediation, 4, 1–15.

    Article  Google Scholar 

  • Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAH) in soil. A review: Journal of Plant Nutrition and Soil Science, 163, 229–248.

    Article  CAS  Google Scholar 

  • Wild, E., Dent, J., Thomas, G. O., & Jones, K. C. (2005a). Real-time visualization and quantification of PAH photodegradation on and within plant leaves. Environmental Science & Technology, 39, 268–273.

    Article  CAS  Google Scholar 

  • Wild, E., Dent, J., Thomas, G. O., & Jones, K. C. (2005b). Direct observation of organic contaminant uptake, storage, and metabolism. Environmental Science & Technology, 39, 3695–3702.

    Article  CAS  Google Scholar 

  • Wium-Anderson, S. (1971). Photosynthetic uptake of free C02 by the roots of Lobelia dortmanna. Physiol. Plant., 25, 245–248.

    Article  Google Scholar 

  • Zhang, H., Morison, J. I. L., & Simmonds, L. P. (1999). Transpiration and water relations of poplar trees growing close to the water table. Tree Physiology, 19, 563–573.

    Google Scholar 

  • Paul, E.A., and Clark, F.E., 1989, Soil Microbiology and Biochemistry, Academic Press, San Diego, 273 p.

    Google Scholar 

  • Westover, K.M., Kennedy, A.C., and Kelley, S.E., (1997). Patterns of rhizosphere microbial community structure associated with co-occurring plant species: Journal of Ecology (85):863–873.

    Google Scholar 

  • Fletcher, J.S., Hedge, R.S., (1995). Release of phenols by perennial plant roots and their potential importance in bioremediation: Chemosphere (31):3009–3016.

    Google Scholar 

  • Conrad, R., 1995, Soil microbial processes and the cycling of atmospheric trace gases: Philosophical Transactions: Physical Sciences and Engineering (351):219–230.

    Google Scholar 

  • Grosse, W., (1989). Thermoosmotic air transport in aquatic plants affecting growth activities and oxygen diffusion to wetland soils: In D. Hammer, editor, Constructed wetlands for wastewater treatment- municipal, industrial, and agricultural: Lewis Publishers, Chelsea, p. 469.

    Google Scholar 

  • Armstrong, J., Armstrong, W., (1987). Phragmites australis-A preliminary study of soil-oxidizing sites and internal gas transport pathways: New Phytologist (108):373–382.

    Google Scholar 

  • Levy, P.E., Meir, P., Allen, S.J., Jarvis, P.G., 1999, The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants:Tree Physiology (19):53–58.

    Google Scholar 

  • Reicosky, D.C., Smith, R.C. G., Meyer, W.S., (1985) Foliage temperature as a means of detecting stress of cotton subjected to a short-term water-table gradient: Agricultural and Forest Meterology (35):193–203.

    Google Scholar 

  • Vroblesky, D. A., Nietch, C. T., Robertson, J. F., Bradley, P. M., Coates, J., & Morris, J. T. (1999). Natural attenuation potential of chlorinated volatile organic compounds in groundwater, TNX flood plain, Savannah River Site, South Carolina (U.S. Geological Survey Water-Resources Investigations Report 99-4071, 43 p).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Landmeyer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Landmeyer, J.E. (2012). Chemical and Physical Properties That Affect the Interaction Between Plants and Contaminated Groundwater. In: Introduction to Phytoremediation of Contaminated Groundwater. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1957-6_12

Download citation

Publish with us

Policies and ethics