Skip to main content

Snake Venomics, Antivenomics, and Venom Phenotyping: The Ménage à Trois of Proteomic Tools Aimed at Understanding the Biodiversity of Venoms

  • Chapter
  • First Online:
Toxins and Hemostasis

Abstract

This review covers the application of proteomic protocols (“venomics”, “antivenomics”, and “venom phenotyping”) to studying the composition and natural history of snake venoms, and the crossreactivity of antivenoms against homologous and heterologous venoms. Toxins from the same protein family present in venoms from snakes belonging to different genera often share antigenic determinants. This circumstance offers the possibility of defining the minimal set of venoms containing the epitopes necessary to generate therapeutic broad-range polyvalent antisera. Recent work shows how the knowledge of evolutionary trends along with venom phenotyping may be used to replace the traditionally used phylogenetic hypothesis for antivenom production strategies by cladistic clustering of venoms based on proteome phenotype and immunological profile similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alape-Girón, A., Sanz, L., Escolano, J., Flores-Díaz, M., Madrigal, M., Sasa, M., Calvete, J.J., 2008. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J. Proteome Res. 7, 3556–3571.

    Article  PubMed  Google Scholar 

  • Angulo, Y., Escolano, J., Lomonte, B., Gutiérrez, J.M., Sanz, L., Calvete, J.J., 2008. Snake venomics of Central American pitvipers: clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi. J. Proteome Res. 7, 708–719.

    Article  PubMed  CAS  Google Scholar 

  • Arce, V., Rojas, E., Ownby, C.L., Gutiérrez, J.M., 2003. Preclinical assessment of the ability of polyvalent (Crotalinae) and anticoral (Elapidae) antivenoms produced in Costa Rica to neutralize the venoms of North American snakes. Toxicon 41, 851–860.

    Article  PubMed  CAS  Google Scholar 

  • Azofeifa-Cordero, G., Arce-Estrada, V., Flores-Diaz, M., Alape-Giron, A., 2008. Immunization with cDNA of a novel P-III type metalloproteinase from the rattlesnake Crotalus durissus durissus elicits antibodies which neutralize 69% of the hemorrhage induced by the whole venom. Toxicon 52, 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, A., Pook, C.E., Harrison, R.A., Wüster, W., 2009. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. Biol. Sci. 276, 2443–2449.

    Article  PubMed  CAS  Google Scholar 

  • Bazaa, A., Marrakchi, N., El Ayeb, M., Sanz, L., Calvete, J.J., 2005. Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics 5, 4223–4235.

    Article  PubMed  CAS  Google Scholar 

  • Billen, B., Bosmans, F., Tytgat, J., 2008. Animal peptides targeting voltage-activated sodium channels. Curr. Pharm. Des. 14, 2492–2502.

    Article  PubMed  CAS  Google Scholar 

  • Bogarín, G., Romero, M., Rojas, G., Lutsch, C., Casadamont, M., Lang, J., Otero, R., Gutiérrez, J.M., 1999. Neutralization, by a monospecific Bothrops lanceolatus antivenom, of toxic activities induced by homologous and heterologous Bothrops snake venoms. Toxicon 37, 551–557.

    Article  PubMed  Google Scholar 

  • Boldrini-França, J., Rodrigues, R.S., Fonseca, F.P., Menaldo, D.L., Ferreira, F.B., Henrique-Silva, F., Soares, A.M., Hamaguchi, A., Rodrigues, V.M., Otaviano, A.R., Homsi-Brandeburgo, M.I., 2009. Crotalus durissus collilineatus venom gland transcriptome: analysis of gene expression profile. Biochimie 91, 586–595.

    Article  PubMed  Google Scholar 

  • Bucher, B., Canonge, D., Thomas, L., Tyburn, B., Robbe-Vincent, A., Choumet, V., Bon, C., Ketterlé, J., Lang, J., 1997. Research group of snake bites in Martinique. Clinical indicators of envenoming and serum levels of venom antigens in patients bitten by Bothrops lanceolatus in Martinique. Trans. Royal Soc. Trop. Med. Hyg. 91, 186–190.

    Article  CAS  Google Scholar 

  • Calvete, J.J., 2009a. Venomics. J. Proteomics 72, 121–282.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., 2009b. Digging into the evolution of venomous systems and learning to twist nature to fight pathology. J. Proteomics 72, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., Juárez, P., Sanz, L., 2007a. Snake venomics. Strategy and applications. J. Mass Spectrom. 42, 1405–1414.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., Marcinkiewicz, C., Sanz, L., 2007b. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J. Proteome Res. 6, 326–336.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., Escolano, J., Sanz, L., 2007c. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa. J. Proteome Res. 6, 2732–2745.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., Fasoli, E., Sanz, L., Boschetti, E., Righetti, P.G., 2009a. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J. Proteome Res. 8, 3055–3067.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., Borges, A., Segura, A., Flores-Díaz, M., Alape-Girón, A., Gutiérrez, J.M., Diez, N., De Sousa, L., Kiriakos, D., Sánchez, E., Faks, J.G., Escolano, J., Sanz, L., 2009b. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: contributing to its taxonomy and snakebite management. J. Proteomics 72, 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., Sanz, L., Cid, P., De La Torre, P., Flores-Diaz, M., Dos Santos, M.C., Borges, A., Bremo, A., Angulo, Y., Lomonte, B., Alape-Giron, A., Gutiérrez, J.M., 2010. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. J. Proteome Res. 9, 528–544.

    Google Scholar 

  • Campbell, J.A., Lamar, W.W., 2004. The Venomous Reptiles of the Western Hemisphere (vols. I and II). Cornell University Press.

    Google Scholar 

  • Chippaux, J.P., Goyffon, M., 2008. Epidemiology of scorpionism: a global appraisal. Acta Trop. 107, 71–79.

    Article  PubMed  Google Scholar 

  • Cidade, D.A.P., Simão, T.A., Dávila, A.M.R., Wagner, G., Junqueira-de-Azevedo, I.L.M., Ho, P.L., Bon, C., Zingali, R., Albano, R.M., 2006. Bothrops jararaca venom transcriptome: analysis of the gene expression pattern. Toxicon 48, 437–461.

    Article  PubMed  CAS  Google Scholar 

  • Clemetson, K.J., Morita, T., Kini, R.M., 2009. Classification and nomenclature of snake venom C-type lectins and related proteins. Toxicon 54, 83.

    Article  PubMed  CAS  Google Scholar 

  • Dart, R.C., McNally, J., 2001. Efficacy, Safety, and Use of Snake Antivenoms in the United States. Ann. Emerg. Med. 37, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • De Lima, M.E., Pimenta, A.M.C., Martin-Euclaire, M.F., Zingali, R.B., 2009. Animal Toxins: State of the Art. Perspectives in Health and Biotechnology. Editora UFMG, Belo Horizonte.

    Google Scholar 

  • Doley, R., Kini, R.M., 2009. Protein complexes in snake venom. Cell. Mol. Life Sci. 66, 2851–2871.

    Article  PubMed  CAS  Google Scholar 

  • Escoubas, P., Quinton, L., Nicholson, G.M., 2008. Venomics: unravelling the complexity of animal venoms with mass spectrometry. J. Mass Spectrom. 43, 279–295.

    Article  PubMed  CAS  Google Scholar 

  • Espino-Solís, G.P., Riaño-Umbarila, L., Becerril, B., Possani, L.D., 2009. Antidotes against venomous animals: state of the art and prospectives. J. Proteomics 72, 183–199.

    Article  PubMed  Google Scholar 

  • Favreau, P., Menin, L., Michalet, S., Perret, F., Cheneval, O., Stöcklin, M., Bulet, P., Stöcklin, R., 2006. Mass spectrometry strategies for venom mapping and peptide sequencing from crude venoms: case applications with single arthropod specimen. Toxicon 47, 676–687.

    Article  PubMed  CAS  Google Scholar 

  • Ferquel, E., de Haro, L., Jan, V., Guillemin, I., Jourdain, S., Teynié, A., d'Alayer, J., Choumet, V., 2007. Reappraisal of Vipera aspis venom neurotoxicity. PLoS One 21, e1194.

    Article  Google Scholar 

  • Fox, J.W., Serrano, S.M., 2005a. Snake toxins and hemostasis. Toxicon 45, 951–1181.

    Article  Google Scholar 

  • Fox, J.W., Serrano, S.M.T., 2005b. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45, 969–985.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J.W., Serrano, S.M., 2007. Approaching the golden age of natural product pharmaceuticals from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr. Pharm. Des. 13, 2927–2934.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J.W., Serrano, S.M., 2009. Timeline of key events in snake venom metalloproteinase research. J. Proteomics 72, 200–209.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J.W., Ma, L., Nelson, K., Sherman, N.E., Serrano, S.M., 2006. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Toxicon 47, 700–714.

    Article  PubMed  CAS  Google Scholar 

  • Francischetti, I.M., My-Pham, V., Harrison, J., Garfield, M.K., Ribeiro, J.M.C., 2004. Bitis gabonica (Gaboon viper) snake venom gland: towards a catalog of full-length transcripts (cDNA) and proteins. Gene 337, 55–69.

    Article  PubMed  CAS  Google Scholar 

  • Fry, B.G., Wickramaratna, J.C., Jones, A., Alewood, P.F., Hodgson, W.C., 2001. Species and regional variations in the effectiveness of antivenom against the in vitro neurotoxicity of death adder (Acanthophis) venoms. Toxicol. Appl. Pharmacol. 175, 140–148.

    Article  PubMed  CAS  Google Scholar 

  • Fry, B.G., Wüster, W., 2004. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol. Biol. Evol. 21, 870–873.

    Article  PubMed  CAS  Google Scholar 

  • Fry, B.G., 2005. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420.

    Article  PubMed  CAS  Google Scholar 

  • Fry, B.G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J., Ramjan, S.F., Vidal, N., Poelmann, R.E., Norman, J.A., 2008. Evolution of an arsenal: Structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell Proteomics 7(2), 215–246. Epub 2007 Sep 12.

    PubMed  CAS  Google Scholar 

  • Fry, B.G., Vidal, N., van der Weerd, L., Kochva, E., Renjifo, C., 2009a. Evolution and diversification of the Toxicofera reptile venom system. J. Proteomics 72, 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Fry, B.G., Roelants, K., Champagne, D.E., Scheib, H., Tyndall, J.D.A., King, G.F., Nevalainen, T.J., Norman, J.A., Lewis, R.J., Norton, R.S., Renjifo, C., Rodríguez de la Vega, R.C., 2009b. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 10, 483–511.

    Article  PubMed  CAS  Google Scholar 

  • Garstang, W., 1922. The theory of recapitulation: a critical re-statement of the biogenetic law. Linn. Soc. Jour. Zool. XXXV, 81–101.

    Article  Google Scholar 

  • Guércio, R.A.P., Shevchenko, A., Shevchenko, A., López-Lozano, J.L., Paba, J., Sousa, M.V., Ricart, C.A.O., 2006. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox. Proteome Sci. 4, 11.

    Article  PubMed  Google Scholar 

  • Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M., Betzel, C., 2008. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionales. J. Proteome Res. 7, 866–886.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, H.L., Sanz, L., Calvete, J.J., 2009. Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes. J. Mol. Evol. 68, 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez, J.M., dos Santos, M.C., Furtado, M.F., Rojas, G., 1991. Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakes. Toxicon. 29(10), 1273–1277.

    Article  PubMed  Google Scholar 

  • Gutiérrez, J.M., Dos Santos, M.C., Furtado, M.F., Rojas, G., 2001. Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakes. Toxicon 29, 1273–1277.

    Article  Google Scholar 

  • Gutiérrez, J.M., Rojas, E., Quesada, L., León, G., Núñez, J., Laing, G.D., Sasa, M., Renjifo, J.M., Nasidi, A., Warrell, D.A., Theakston, R.D.G., Rojas, G., 2005. Pan-African polyspecific antivenom produced by caprylic acid purification of horse IgG: an alternative to the antivenom crisis in Africa. Trans. Roy. Soc. Trop. Med. Hyg. 99, 468–475.

    Article  PubMed  Google Scholar 

  • Gutiérrez, J.M., Theakston, R.D.G., Warrell, D.A., 2006. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 3, e150.

    Article  PubMed  Google Scholar 

  • Gutiérrez, J.M., Sanz, L., Escolano, J., Fernández, J., Lomonte, B., Angulo, Y., Rucavado, A., Warrell, D.A., Calvete, J.J., 2008. Snake venomic of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom. J. Proteome Res. 7, 4396–3408.

    Article  PubMed  Google Scholar 

  • Gutiérrez, J.M., 2009. Bothrops asper: from natural history to public health. Toxicon 54, 901–1028.

    Article  PubMed  Google Scholar 

  • Gutiérrez, J.M., León, G., 2009. Snake antivenoms, in: De Lima, M.E., Pimenta, A.M.C., Martin-Euclaire, M.F., Zingali, R.B. (Eds.), Animal Toxins: State of the Art. Perspectives in Health and Biotechnology. Editora UFMG, Belo Horizonte, Brazil, pp. 393–421.

    Google Scholar 

  • Gutiérrez, J.M., Lomonte, B., León, G., Alape-Girón, A., Flores-Díaz, M., Sanz, L., Angulo, Y., Calvete, J.J., 2009. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J. Proteomics 72, 227–240.

    Article  PubMed  Google Scholar 

  • Gutiérrez, J.M., Sanz, L., Flores-Diaz, M., Figueroa, L., Madrigal, M., Herrera, M., Villalta, M., León, G., Estrada, R., Borges, A., Alape-Girón, A., Calvete, J.J., 2010. Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: integrating antivenomics and neutralization approaches. J. Proteome Res. 9, 564–577.

    Google Scholar 

  • Harvey, A.L., Bradley, K.N., Cochran, S.A., Rowan, E.G., Pratt, J.A., Quillfeldt, J.A., Jerusalinsky, D.A., 1998. What can toxins tell us for drug discovery? Toxicon 36, 1635–1640.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y., Cantu, B.A., Sánchez, E.E., Pérez, J.C., 2008. Complementary DNA sequencing and identification of mRNAs from the venomous gland of Agkistrodon piscivorus leucostoma. Toxicon 51, 1457–1466.

    Article  PubMed  CAS  Google Scholar 

  • Juárez, P., Sanz, L., Calvete, J.J., 2004. Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics 4, 327–328.

    Article  PubMed  Google Scholar 

  • Juárez, P., Wagstaff, S.C., Oliver, J., Sanz, L., Harrison, R.A., Calvete, J.J., 2006. Molecular cloning of disintegrin-like transcript BA-5A from a Bitis arietans venom gland cDNA library: a putative intermediate in the evolution of the long-chain disintegrin bitistatin. J. Mol. Evol. 63, 142–152.

    Article  PubMed  Google Scholar 

  • Juárez, P., Comas, I., González-Candelas, F., Calvete, J.J., 2008. Evolution of snake venom disintegrins by positive Darwinian selection. Mol. Biol. Evol. 25, 2391–2407.

    Article  PubMed  Google Scholar 

  • Judge, R.K., Henry, P.J., Mirtschin, P., Jelinek, G., Wilce, J.A., 2006. Toxins not neutralized by brown snake antivenom. Toxicol. Appl. Pharmacol. 213, 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Junqueira-de-Azevedo, I.L., Ho, P.L., 2002. A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene 299, 279–291.

    Article  CAS  Google Scholar 

  • Junqueira-de-Azevedo, I.L.M., Ching, A.T.C., Carvalho, E., Faria, F., Nishiyama M.Y., Jr., Ho, P.L., Diniz, M.R.V., 2006. Lachesis muta (Viperidae) cDNAs reveal diverging pitviper molecules and scaffolds typical of cobra (Elapidae) venoms: implications in snake toxin repertoire evolution. Genetics 173, 877–889.

    Article  PubMed  CAS  Google Scholar 

  • Junqueira de Azevedo, I.L.M., Diniz, M.R.V., Ho, P.L., 2009. Venom gland transcriptomic analysis, in: De Lima, M.E., Pimenta, A.M.C., Martin-Euclaire, M.F., Zingali, R.B. (Eds.), Animal Toxins: State of the Art. Perspectives in Health and Biotechnology. Editora UFMG, Belo Horizonte, Brazil, pp. 693–713.

    Google Scholar 

  • Kashima, S., Roberto, P.G., Soares, A.M., Astolfi-Filho, S., Pereira, J.O., Giuliati, S., Faria M., Jr., Xavier, M.A.S., Fontes, M.R.M., Giglio, J.R., Franca, S.C.., 2004. Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspect: I-gene expression profile of highly expressed phospholipases A2. Biochimie 86, 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D.G., de Silva, H.J., 2008. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, e218.

    Article  PubMed  Google Scholar 

  • Kem, W.R., Turk T., 2009. Cnidarian toxins and venoms. Toxicon 54, 1029–1214.

    Article  PubMed  CAS  Google Scholar 

  • Koh, D.C.I., Armugam, A., Jeyaseelan, K., 2007. Snake venom components and their applications in biomedicine. Cell. Mol. Life Sci. 63, 3030–3041.

    Article  Google Scholar 

  • Kulkeaw K, Chaicump W, Sakolvaree Y, Tongtawe P, Tapchaisri P., 2007. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon 49, 1026–1041.

    Article  PubMed  CAS  Google Scholar 

  • Liang, S., 2008. Proteome and peptidome profiling of spider venoms. Expert Rev. Proteomics 5, 731–746.

    Article  PubMed  CAS  Google Scholar 

  • Lomonte, B., Escolano, J., Fernández, J., Sanz, L., Angulo, Y., Gutiérrez, J.M., Calvete, J.J., 2008. Snake venomics and antivenomics of the arboreal neotopical pitvipers Bothriechis lateralis and Bothriehis schlegelii. J. Proteome Res. 7, 2445–2457.

    Article  PubMed  CAS  Google Scholar 

  • Mackessy, S.P., 2008. Venom composition in rattlesnakes: trends and biological significance, in: Hayes, W.K., Beaman, K.R., Cardwell, M.D., Bush, S.P. (Eds.), The Biology of Rattlesnakes. Loma Linda University Press, Loma Linda, CA, pp. 495–510.

    Google Scholar 

  • Mackessy, S.P., 2009. Handbook of Venoms and Toxins of Reptiles. CRC Press, Taylor & Francis, Boca Ratón, FL, pp. 1–507.

    Book  Google Scholar 

  • Nei, M., Gu, X., Sitnikova, T., 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc. Natl. Acad. Sci. U.S.A. 94, 7799–7806.

    Article  PubMed  CAS  Google Scholar 

  • Neiva, M., Arraes, F.B., de Souza, J.V., Rádis-Baptista, G., Prieto da Silva, A.R., Walter, M.E., Brigido, M. de M., Yamane, T., López-Lozano, J.L., Astolfi-Filho, S., 2009. Transcriptome analysis of the Amazonian viper Bothrops atrox venom gland using expressed sequence tags (ESTs). Toxicon 53, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Norton, R.S., Olivera, B.M., 2006. Conotoxins down under. Toxicon 48, 789–798.

    Google Scholar 

  • Núñez, V., Cid, P., Sanz, L., De La Torre, P., Angulo, Y., Lomonte, B., Gutiérrez, J.M., Calvete, J.J., 2009. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J. Proteomics 73, 57–78.

    Article  PubMed  Google Scholar 

  • Ohno, M., Menez, R., Ogawa, T., Danse, J.M., Shimohigashi, Y., Fromen, C., Ducancel, F., Zinn-Justin, S., Le Du, M.H., Boulain, J.C., Tamiya, T., Menez, A., 1998. Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog. Nucleic Acid Res. Mol. Biol. 59, 307–364.

    Article  CAS  Google Scholar 

  • Olivera, B.M., 2006. Conus peptides: biodiversity-based discovery and exogenomics. J. Biol. Chem. 281, 31173–31177.

    Article  PubMed  CAS  Google Scholar 

  • Olivera, B.M., Bulaj, G., Garrett, J., Terlau, H., Imperial, J., 2009. Peptide toxins from the venoms of cone snails and other toxoglossan gastropods, in: De Lima, M.E., Pimenta, A.M.C., Martin-Euclaire, M.F., Zingali, R.B. (Eds.), Animal Toxins: State of the Art. Perspectives in Health and Biotechnology. Editora UFMG, Belo Horizonte, Brazil, pp. 25–48.

    Google Scholar 

  • Pahari, S., Mackessy, S.P., Kini, R.M., 2007. Rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol. Biol. 8, 115.

    Article  PubMed  Google Scholar 

  • Qinghua, L., Xiaowei, Z., Wei, Y., Chenji, L., Yijun, H., Pengxin, Q., Xingwen, S., Songnian, H., Guangmei, Y., 2006. A catalog for transcripts in the venom gland of the Agkistrodon acutus: identification of the toxins potentially involved in coagulopathy. Biochem. Biophys. Res. Commun. 341, 522–531.

    Article  PubMed  Google Scholar 

  • Richardson, W.H., Tanen, D.A., Tong, T.C., Betten, D.P., Carstairs, S.D., Williams, S.R., Cantrell, F.L., Clark, R.F., 2005. Crotalidae polyvalent immune Fab (ovine) antivenom is effective in the neutralization of South American Viperidae venoms in a murine model. Ann. Emerg. Med. 45, 595–602.

    Article  PubMed  Google Scholar 

  • Risch, M., Georgieva, D., von Bergen, M., Jehmlich, N., Genov, N., Arni, R.K., Betzel, C., 2009. Snake Venomics of the Siamese Russell's Viper (Daboia russelli siamensis) – relation to pharmacological activities. J. Proteomics 72, 256–269.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez, E.E., Ramírez, M.S., Galán, J.A., López, G., Rodríguez-Acosta, A, Pérez, J.C., 2003a. Cross reactivity of three antivenoms against North American snake venoms. Toxicon 41, 315–320.

    Article  PubMed  Google Scholar 

  • Sánchez, E.E., Galán, J.A., Rodríguez-Acosta, A, Chase, P., Pérez, J.C., 2003b. Cross reactivity of three antivenoms against North American snake venoms. Toxicon 41, 357–365.

    Article  PubMed  Google Scholar 

  • Sanz, L., Gibbs, H.L., Mackessy, S.P., Calvete, J.J., 2006. Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. J. Proteome Res. 5, 2098–2112.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, L., Escolano, J., Ferretti, M., Biscoglio, M.J., Rivera, E., Crescenti, E.J., Angulo, Y., Lomonte, B., Gutiérrez, J.M., Calvete, J.J., 2008a. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J. Proteomics 71, 46–60.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, L., Ayvazyan, N., Calvete, J.J., 2008b. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J. Proteomics 71, 198–209.

    Article  PubMed  CAS  Google Scholar 

  • Saravia, P., Rojas, E., Arce, V., Guevara, C., López, J.C., Chaves, E., Velásquez, R., Rojas, G., Gutiérrez, J.M., 2002. Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications. Rev. Biol. Trop. 50, 337–346.

    PubMed  Google Scholar 

  • Serrano, S.M.T., Shannon, J.D., Wang, D., Camargo, A.C., Fox, J.W., 2005. A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics. Proteomics 5, 501–510.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, S.M.T., Fox, J.W., 2008. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics 8, 909–920.

    Article  PubMed  Google Scholar 

  • Stock, R.P., Massougbodji, A., Alagón, A., Chippaux, J-P., 2007. Bringing antivenoms to Sub-Saharan Africa. Nat. Biotech. 2, 173–177.

    Article  Google Scholar 

  • Tashima, A.K., Sanz, L., Camargo, A.C.M., Serrano, S.M.T., Calvete, J.J., 2008. Snake venomics of the Brazilian pitvipers Bothrops cotiara and Bothrops fonsecai. Identification of taxonomy markers. J. Proteomics 71, 473–485.

    Article  PubMed  CAS  Google Scholar 

  • Theakston, R.D.G., Warrell, D.A., 2000. Crisis in snake antivenom supply for Africa. Lancet 356, 2104.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, L., Tyburn, B., 1996. The research group of snake bite in Martinique. Bothrops lanceolatus bites in Martinique: clinical aspects and treatment, in: Bon, C., Goyffon, M. (Eds.), Envenomings and Their Treatments. Fondation Marcel Mérieux, Lyon, pp. 255–265.

    Google Scholar 

  • Valente, R.,H., Guimarães, P.R., Junqueira, M., Neves-Ferreira, A.G.C., Soares, M.R., Chapeaurouge, A., Trugilho, M., León, I.R., Rocha, S., Oliveira-Carvalho, A.L., Serrão, L.W., Dutra, D., Leão, L.I., Junqueira-de-Azevedo, I., Ho, P.L., Zingali, R.B., Perales, J., Domont, G.B., 2009. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J. Proteomics 72, 241–255.

    Article  PubMed  CAS  Google Scholar 

  • Vetter, R.S., Isbister, G.K., 2008. Medical aspects of spider bites. Annu. Rev. Entomol. 53, 409–429.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, N., 2002. Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J. Toxicol. Toxin Rev. 21, 21–41.

    Article  Google Scholar 

  • Wagstaff, S.C., Harrison, R.A., 2006. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel α9β1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like proteases. Gene 377, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff, S.C., Sanz, L., Juárez, P., Harrison, R.A., Calvete, J.J., 2009. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J. Proteomics 71, 609–623.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization, 2007. Rabies and Envenomings. A Neglected Public Health Issue: Report of a Consultative Meeting. WHO, Geneva. Available: http://www.who.int/bloodproducts/animal_sera/Rabies.pdf.

  • Wood, D.L., Miljenović, T., Cai, S., Raven, R.J., Kaas, Q., Escoubas, P., Herzig, V., Wilson, D., King, G.F., 2009. ArachnoServer: a database of protein toxins from spiders. BMC Genomics 10, 375.

    Article  PubMed  Google Scholar 

  • Zhang, B., Liu, Q., Yin, W., Zhang, X., Huang, Y., Luo, Y., Qiu, P., Su, X., Yu, J., Hu, S., Yan, G., 2006. Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. BMC Genomics 7, 152.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully thank the many colleagues (particularly from the Instituto Clodomiro Picado, Costa Rica) who, over the years, have provided precious venoms and antivenoms within the framework of collaborative projects and have contributed insight and suggestions. Funding for the projects described in this paper was provided by grant BFU2007-61563 from the Ministerio de Educación y Ciencia, Madrid, CRUSA-CSIC (2007CR0004), and CYTED (206AC0281). Travelling between Spain and Costa Rica was financed by Acciones Integradas, 2006CR0010 between CSIC and the University of Costa Rica (UCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Calvete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Calvete, J.J. (2010). Snake Venomics, Antivenomics, and Venom Phenotyping: The Ménage à Trois of Proteomic Tools Aimed at Understanding the Biodiversity of Venoms. In: Kini, R., Clemetson, K., Markland, F., McLane, M., Morita, T. (eds) Toxins and Hemostasis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9295-3_4

Download citation

Publish with us

Policies and ethics