Skip to main content

Small Molecule Drug Discovery for Fabry Disease

  • Chapter
  • First Online:
Fabry Disease

Abstract

Small molecule therapy has been widely used for the treatment of a variety of diseases. Small molecule drugs can be easily administered to patients, and are advantageous in that they can cross the blood-brain barrier, do not cause autoimmune responses, and have lower manufacturing costs. In this chapter, we focus on different strategies and methods for small molecule drug development as it applies to Fabry disease. The steps involved in developing an appropriate high throughput screen to identify activators and inhibitors of alpha galactosidase A are outlined. Assay development includes optimization of the assay pH, time course, enzyme and substrate concentration and the amount of sodium taurocholate used. The assay must then be validated and confirmed using additional screens. The optimized screens can be used to identify novel lead compounds that can serve as new starting points for drug development for Fabry disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC et al (2007) Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406(2):285–295

    Article  PubMed  CAS  Google Scholar 

  2. Ishii S, Suzuki Y, Fan JQ (2000) Role of Ser-65 in the activity of alpha-galactosidase A: characterization of a point mutation (S65T) detected in a patient with Fabry disease. Arch Biochem Biophys 377(2):228–233

    Article  PubMed  CAS  Google Scholar 

  3. Ishii S, Kase R, Sakuraba H, Suzuki Y (1993) Characterization of a mutant alpha-galactosidase gene product for the late-onset cardiac form of Fabry disease. Biochem Biophys Res Commun 197(3):1585–1589

    Article  PubMed  CAS  Google Scholar 

  4. Desnick R, Ioannou Y, Eng C (2001) Alpha-galactosidase A deficiency: Fabry disease, 8th edn. McGraw-Hill Professional, New York

    Google Scholar 

  5. Brady RO (2006) Enzyme replacement for lysosomal diseases. Annu Rev Med 57:283–296

    Article  PubMed  CAS  Google Scholar 

  6. Lidove O, Joly D, Barbey F, Bekri S, Alexandra JF, Peigne V et al (2007) Clinical results of enzyme replacement therapy in Fabry disease: a comprehensive review of literature. Int J Clin Pract 61(2):293–302

    Article  PubMed  CAS  Google Scholar 

  7. Wilcox WR, Banikazemi M, Guffon N, Waldek S, Lee P, Linthorst GE et al (2004) Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet 75(1):65–74

    Article  PubMed  CAS  Google Scholar 

  8. Moore DF, Scott LT, Gladwin MT, Altarescu G, Kaneski C, Suzuki K et al (2001) Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy. Circulation 104(13):1506–1512

    Article  PubMed  CAS  Google Scholar 

  9. Bernier V, Lagace M, Bichet DG, Bouvier M (2004) Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 15(5):222–228

    Article  PubMed  CAS  Google Scholar 

  10. Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM (2004) Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 5(11):821–837

    Article  PubMed  CAS  Google Scholar 

  11. Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW (2002) Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 99(24):15428–15433

    Article  PubMed  CAS  Google Scholar 

  12. Sawkar AR, Adamski-Werner SL, Cheng WC, Wong CH, Beutler E, Zimmer KP et al (2005) Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chem Biol 12(11):1235–1244

    Article  PubMed  CAS  Google Scholar 

  13. Alfonso P, Pampin S, Estrada J, Rodriguez-Rey JC, Giraldo P, Sancho J et al (2005) Miglustat (NB-DNJ) works as a chaperone for mutated acid beta-glucosidase in cells transfected with several Gaucher disease mutations. Blood Cells Mol Dis 35(2):268–276

    Article  PubMed  CAS  Google Scholar 

  14. Zheng W, Padia J, Urban DJ, Jadhav A, Goker-Alpan O, Simeonov A et al (2007) Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Proc Natl Acad Sci USA 104(32):13192–13197

    Article  PubMed  CAS  Google Scholar 

  15. Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT, Reuser AJ (2007) Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab 90(1):49–57

    Article  PubMed  CAS  Google Scholar 

  16. Parenti G, Zuppaldi A, Gabriela Pittis M, Rosaria Tuzzi M, Annunziata I, Meroni G et al (2007) Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease. Mol Ther 15(3):508–514

    Article  PubMed  CAS  Google Scholar 

  17. Tropak MB, Reid SP, Guiral M, Withers SG, Mahuran D (2004) Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients. J Biol Chem 279(14):13478–13487

    Article  PubMed  CAS  Google Scholar 

  18. Matsuda J, Suzuki O, Oshima A, Yamamoto Y, Noguchi A, Takimoto K et al (2003) Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci USA 100(26):15912–15917

    Article  PubMed  CAS  Google Scholar 

  19. Fan JQ, Ishii S (2007) Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme inhibitors. Febs J 274(19):4962–4971

    Article  PubMed  CAS  Google Scholar 

  20. Shin SH, Murray GJ, Kluepfel-Stahl S, Cooney AM, Quirk JM, Schiffmann R et al (2007) Screening for pharmacological chaperones in Fabry disease. Biochem Biophys Res Commun 359(1):168–173

    Article  PubMed  CAS  Google Scholar 

  21. Gelsthorpe ME, Baumann N, Millard E, Gale SE, Langmade SJ, Schaffer JE et al (2008) Niemann-Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J Biol Chem 283(13):8229–8236

    Article  PubMed  CAS  Google Scholar 

  22. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  PubMed  CAS  Google Scholar 

  23. Mu TW, Fowler DM, Kelly JW (2008) Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. PLoS Biol 6(2):e26

    Article  PubMed  Google Scholar 

  24. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A et al (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA 103(31):11473–11478

    Article  PubMed  CAS  Google Scholar 

  25. Mapes CA, Sweeley CC (1973) Galactosyl (alpha 1–4)galactosylceramide: galactosyl hydrolase activity in normal and Fabry plasma. Biochem Biophys Res Commun 53(4):1317–1324

    Article  PubMed  CAS  Google Scholar 

  26. Hultberg B, Sjoblad S, Ockerman PA (1975) Glycosidases in human skin fibroblast cultures. Alpha-fucosidase, alpha-galactosidase, alpha-glucosidase, beta-mannosidase, and N-acetyl-alpha-glucosaminidase. Acta Paediatr Scand 64(1):123–131

    Article  PubMed  CAS  Google Scholar 

  27. Shi ZD, Motabar O, Goldin E, Liu K, Southall N, Sidransky E et al (2009) Synthesis and characterization of a new fluorogenic substrate for alpha-galactosidase. Anal Bioanal Chem 394(7):1903–1909

    Article  PubMed  CAS  Google Scholar 

  28. de Groot PG, Hamers MN, Westerveld A, Schram AW, Meera Khan P, Tager JM (1978) A new immunochemical method for the quantitative measurement of specific gene products in man-rodent somatic cell hybrids. Hum Genet 44(3):295–304

    Article  PubMed  Google Scholar 

  29. Yagi F, Eckhardt AE, Goldstein IJ (1990) Glycosidases of Ehrlich ascites tumor cells and ascitic fluid–purification and substrate specificity of alpha-N-acetylgalactosaminidase and alpha-galactosidase: comparison with coffee bean alpha-galactosidase. Arch Biochem Biophys 280(1):61–67

    Article  PubMed  CAS  Google Scholar 

  30. Tsou KC, Su HC (1964) A Study Of Yeast Alpha-Galactosidase With Naphthyl Alpha-D-Galactopyranosides As Chromogenic Substrates. Anal Biochem 8:415–423

    Article  PubMed  CAS  Google Scholar 

  31. Fan JQ, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 5(1):112–115

    Article  PubMed  CAS  Google Scholar 

  32. Levery SB, Hakomori S (1987) Microscale methylation analysis of glycolipids using capillary gas chromatography-chemical ionization mass fragmentography with selected ion monitoring. Methods Enzymol 138:13–25

    Article  PubMed  CAS  Google Scholar 

  33. Oshima M, Asano K, Shibata S, Suzuki Y, Masuzawa M (1990) Urinary neutral glycosphingolipid analysis of patients with Fabry’s disease; rapid isocratic elution from high-performance liquid chromatography as per-o-benzoyl derivatives. Biochim Biophys Acta 1043(2):157–160

    Article  PubMed  CAS  Google Scholar 

  34. Zeidner KM, Desnick RJ, Ioannou YA (1999) Quantitative determination of globotriaosylceramide by immunodetection of glycolipid-bound recombinant verotoxin B subunit. Anal Biochem 267(1):104–113

    Article  PubMed  CAS  Google Scholar 

  35. Fauler G, Rechberger GN, Devrnja D, Erwa W, Plecko B, Kotanko P et al (2005) Rapid determination of urinary globotriaosylceramide isoform profiles by electrospray ionization mass spectrometry using stearoyl-d35-globotriaosylceramide as internal standard. Rapid Commun Mass Spectrom 19(11):1499–1506

    Article  PubMed  CAS  Google Scholar 

  36. Yam GH, Bosshard N, Zuber C, Steinmann B, Roth J (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 290(4):C1076–C1082

    Article  PubMed  CAS  Google Scholar 

  37. Yam GH, Zuber C, Roth J (2005) A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. Faseb J 19(1):12–18

    Article  PubMed  CAS  Google Scholar 

  38. Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, Cardarelli CO et al (1997) alpha-Galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA 94(6):2540–2544

    Article  PubMed  CAS  Google Scholar 

  39. Ishii S, Yoshioka H, Mannen K, Kulkarni AB, Fan JQ (2004) Transgenic mouse expressing human mutant alpha-galactosidase A in an endogenous enzyme deficient background: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease. Biochim Biophys Acta 1690(3):250–257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Sidransky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Motabar, O., Goldin, E., Zheng, W., Sidransky, E. (2010). Small Molecule Drug Discovery for Fabry Disease. In: Elstein, D., Altarescu, G., Beck, M. (eds) Fabry Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9033-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9033-1_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9032-4

  • Online ISBN: 978-90-481-9033-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics