Skip to main content

Laboratory Diagnosis of Fabry Disease

  • Chapter
  • First Online:
Fabry Disease

Abstract

The definitive diagnosis of Fabry disease in male patients is normally made by demonstrating a deficiency of α-galactosidase A in a blood sample, which may be white blood cells, plasma/serum or a dried blood spot. The diagnosis is confirmed by mutational analysis. The enzymatic assay is unreliable for detecting female carriers, who can only be diagnosed reliably by mutational analysis. The measurement of the storage products, globotriaosylceramide (Gb3) in plasma and urine or globotriaosylsphingosine (lyso-Gb3) in plasma can often provide support for a diagnosis and is useful for monitoring treatment. Methods for mass or high-risk screening have been developed based on measuring the α-galactosidase A activity and/or protein in dried blood spots or the storage products in urine collected on filter paper. In the future the detection of mutations in the α-galactosidase A using high-throughput methods for analysing DNA might be the first step rather than a confirmatory one in the diagnosis of Fabry disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck M (2006) Demographics of FOS – the Fabry Outcome Survey. In: Mehta A, Beck M, Sunder-Plassmann G (eds) Fabry disease: perspectives from 5 years of FOS. Pharmagenesis, Oxford, pp 155–161

    Google Scholar 

  2. Kint JA (1970) Fabry’s disease: α-galactosidase deficiency. Science 167:1268–1269

    Article  PubMed  CAS  Google Scholar 

  3. Desnick RJ, Allen KY, Desnick SJ, Raman MK, Bernlohr RW, Krivit W (1973) Fabry’s disease: enzymatic diagnosis of hemizygotes and heterozygotes. α-galactosidase activities in plasma, serum, urine and leukocytes. J Lab Clin Med 81:157–171

    PubMed  CAS  Google Scholar 

  4. Winchester B, Young E (2006) Biochemical and genetic diagnosis of Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (eds) Fabry disease: perspectives from 5 years of FOS. Pharmagenesis, Oxford, pp 169–181

    Google Scholar 

  5. Desnick RJ, Ioannou YA, Eng ME (2001) α-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly D, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 3, 8th edn. McGraw-Hill, New York, pp 3733–3774

    Google Scholar 

  6. Desnick RJ, Brady R, Barranger J, Collins AJ, Germain DP, Goldman M (2003) Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 138(4):338–346

    PubMed  Google Scholar 

  7. Caudron E, Sandrine R, Germain DP, Chaminade P, Prognon P (2007) Laboratory diagnosis of Fabry disease: historical perspectives and recent breakthroughs. Presse Med 36(Spec No 1):1S76–81

    Google Scholar 

  8. Zarate YA, Hopkin RJ (2008) Lysosomal storage disease 3:Fabry’s disease. Lancet 372(9647):1427–1435

    Article  PubMed  CAS  Google Scholar 

  9. Schiffman R (2009) Fabry disease. Pharmacol Ther 122:65–77

    Article  CAS  Google Scholar 

  10. Chamoles NA, Blanco M, Gaggioli D (2001) Fabry disease: enzymatic diagnosis in dried blood spots on filter paper. Clin Chim Acta 308(1–2):195–196

    Article  PubMed  CAS  Google Scholar 

  11. Mills K, Johnson A, Winchester B (2002) Synthesis of novel internal standards for the quantitative determination of plasma ceramide trihexoside in Fabry disease by tandem mass spectrometry. FEBS Lett 515(1–3):171–176

    Article  PubMed  CAS  Google Scholar 

  12. Boscaro F, Pieraccini G, la Marca G, Bartolucci G, Luceri C, Luceri F, Moneti G (2002) Rapid quantitation of globotriaosylceramide in human plasma and urine: a potential application for monitoring enzyme replacement therapy in Anderson-Fabry disease. Rapid Commun Mass Spectrom 16(16):1507–1514

    Article  PubMed  CAS  Google Scholar 

  13. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R et al (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci (USA) 105(8):2812–2817

    Article  CAS  Google Scholar 

  14. Mills K, Vellodi A, Morris P, Cooper D, Morris M, Young E, Winchester B (2004) Monitoring the clinical and biochemical response to enzyme replacement therapy in three children with Fabry disease. Eur J Pediatr 163(10):595–603

    PubMed  CAS  Google Scholar 

  15. Schiffmann R, Kopp JB, Austin HA et al (2001) Enzyme replacement in Fabry disease: a randomised controlled trial. JAMA 285(21):2743–2749

    Article  PubMed  CAS  Google Scholar 

  16. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S et al (2001) Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med 345(1):9–16

    Article  PubMed  CAS  Google Scholar 

  17. Auray-Blais C, Cyr D, Mills K, Giguere R, Drouin R (2007) Development of a filter paper method potentially applicable to mass and high-risk urinary screenings for Fabry disease. J Inherit Metab Dis 30(1):106

    Article  PubMed  CAS  Google Scholar 

  18. Mayes JS, Scheerer JB, Sifers RN, Donaldson ML (1981) Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry’s disease. Clin Chim Acta 112(2):247–251

    Article  PubMed  CAS  Google Scholar 

  19. Bishop DF, Grabowski GA, Desnick RJ (1981) Fabry disease: an asymptomatic hemizygote with significant residual α-galactosidase A activity. Am J Hum Genet 33:71A

    Google Scholar 

  20. Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC, Fan JQ (2007) Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406(2):285–295

    Article  PubMed  CAS  Google Scholar 

  21. Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M et al (1995) An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 333(5):288–293

    Article  PubMed  CAS  Google Scholar 

  22. Nakao S, Kodama C, Takenaka T, Tanaka A, Yasumoto Y, Yoshida A et al (2003) Fabry disease: detection of undiagnosed hemodialysis patients and identification of a ‘renal variant’ phenotype. Kidney Int 64(3):801–807

    Article  PubMed  Google Scholar 

  23. Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G et al (2002) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore) 81(2):122–138

    Article  CAS  Google Scholar 

  24. Dobrovolny R, Dvorakova L, Ledvinova J, Magage S, Bultas J, Lubanda JC et al (2005) Relationship between X-inactivation and clinical involvement in Fabry heterozygotes. Eleven novel mutations in the alpha-galactosidase A gene in the Czech and Slovak population. J Mol Med 83(8):647–654

    Article  PubMed  CAS  Google Scholar 

  25. Maier EM, Osterrieder S, Whybra C, Ries M, Gal A, Beck M et al (2006) Disease manifestations and X inactivation in heterozygous females with Fabry disease. Acta Paediatr Suppl 95(451):30–38

    Article  PubMed  Google Scholar 

  26. Bishop DF, Calhoun DH, Bernstein HS, Hantzopoulos P, Quinn M, Desnick RJ (1986) Human alpha-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci USA 83(13):4859–4863

    Article  PubMed  CAS  Google Scholar 

  27. Kornreich R, Desnick RJ, Bishop DF (1989) Nucleotide sequence of the human alpha-galactosidase A gene. Nucleic Acids Res 17(8):3301–3302

    Article  PubMed  CAS  Google Scholar 

  28. Blaydon D, Hill J, Winchester B (2001) Fabry disease: 20 novel GLA mutations in 35 families. Hum Mutat 18(5):459

    Article  PubMed  CAS  Google Scholar 

  29. Germain D, Biasotto M, Tosi M, Meo T, Kahn A, Poenaru L (1996) Fluorescence-assisted mismatch analysis (FAMA) for exhaustive screening of the alpha-galactosidase A gene and detection of carriers in Fabry disease. Hum Genet 98(6):719–726

    Article  PubMed  CAS  Google Scholar 

  30. Shabbeer J, Robinson M, Desnick RJ (2005) Detection of alpha-galactosidase A mutations causing Fabry disease by denaturing high performance liquid chromatography. Hum Mutat 25(3):299–305

    Article  PubMed  CAS  Google Scholar 

  31. Eng CM, Resnick-Silverman LA, Niehaus DJ, Astrin KH, Desnick RJ (1993) Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet 53(6):1186–1197

    PubMed  CAS  Google Scholar 

  32. Aoshima T, Sekido Y, Miyazaki T, Kajita M, Mimura S, Watanabe K et al (2000) Rapid detection of deletion mutations in inherited metabolic diseases by melting curve analysis with LightCycler. Clin Chem 46(1):119–122

    PubMed  CAS  Google Scholar 

  33. Wu L, Williams PM, Koch W (2005) Clinical applications of microarray-based diagnostic tests. Biotechniques 39(10 Suppl):S577–S582

    PubMed  Google Scholar 

  34. Bernstein HS, Bishop DF, Astrin KH, Kornreich R, Eng CM, Sakuraba H, Desnick RJ (1989) Fabry disease: six gene rearrangements and an exonic point mutation in the alpha-galactosidase gene. J Clin Invest 83(4):1390–1399

    Article  PubMed  CAS  Google Scholar 

  35. Kornreich R, Desnick RJ (1993) Fabry disease: detection of gene rearrangements in the human α-galactosidase gene by multiplex PCR amplification. Hum Mutat 2(2):108–111

    Article  PubMed  CAS  Google Scholar 

  36. Schirinzi A, Centra M, Prattichizzo C, Gigante M, De Fabritiis M, Giancaspro V et al (2008) Identification of GLA gene deletions in Fabry patients by Multiplex Ligation-dependent Probe Amplification (MLPA). Mol Genet Metab 94(3):382–385

    Article  PubMed  CAS  Google Scholar 

  37. Ishii S, Nakao S, Minamikawa-Tachino R, Desnick RJ, Fan J-Q (2002) Alternative splicing in the α-galactosidase A gene: increased exon inclusion results in the Fabry cardiac phenotype. Am J Hum Genet 70(4):994–1002

    Article  PubMed  CAS  Google Scholar 

  38. Filoni C, Caciotti A, Carraresi L, Donati MA, Mignani R, Parini R et al (2008) Unbalanced GLA mRNAs ratio quantified by real-time PCR in Fabry patients’ fibroblasts results in Fabry disease. Eur J Hum Genet 16(11):1311–1317

    Article  PubMed  CAS  Google Scholar 

  39. Handa Y, Yotsumoto S, Isobe E, Sai Y, Yoshii N, Nakao S et al (2000) A case of symptomatic heterozygous female Fabry’s disease without detectable mutation in the alpha-galactosidase gene. Dermatology 200(3):262–265

    Article  PubMed  CAS  Google Scholar 

  40. Davies JP, Winchester BG, Malcolm S (1993) Sequence variations in the first exon of α-galactosidase A. J Med Genet 30(8):658–663

    Article  PubMed  CAS  Google Scholar 

  41. Fitzmaurice TF, Desnick RJ, Bishop DF (1997) Human α-galactosidase A: high plasma activity expressed by the 30G->A allele. J Inherit Metab Dis 20(5):643–657

    Article  PubMed  CAS  Google Scholar 

  42. Oliveira JP, Ferreira S, Barceló J, Gaspar P, Carvalho F, Sá Miranda MC, Månsson J-E (2008 Nov 3) Effect of single-nucleotide polymorphisms of the 5’ untranslated region of the human alpha-galactosidase gene on enzyme activity, and their frequencies in Portuguese caucasians. J Inher Metab Dis Short Report 2008 #124 (Epub ahead of print)

    Google Scholar 

  43. Oliveira JP, Ferreira S, Reguenga C, Carvalho F, Månsson J-E (2008 Nov 3) The g.1170C>T polymorphism of the 5’ untranslated region of the human alpha-galactosidase gene is associated with decreased enzyme expression – Evidence from a family study. J Inher Metab Dis Short Report 2008 #128 (Epub ahead of print)

    Google Scholar 

  44. Froissart R, Guffon N, Vanier MT, Desnick RJ, Maire I (2003) Fabry disease: D313Y is an alpha-galactosidase A sequence variant that causes pseudodeficient activity in plasma. Mol Genet Metab 80(3):307–314

    Article  PubMed  CAS  Google Scholar 

  45. Yasuda M, Shabbeer J, Benson SD, Maire I, Burnett RM, Desnick RJ (2003) Fabry disease: characterization of alpha-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele. Hum Mutat 22(6):486–492

    Article  PubMed  CAS  Google Scholar 

  46. Laney DA, Fernhoff PM (2008) Diagnosis of Fabry disease via analysis of family history. J Genet Couns 17(1):79–83

    Article  PubMed  Google Scholar 

  47. Rozenfeld PA, Tarabuso A, Ebner R, Ramallo G, Fossati CA (2006) A successful approach for the detection of Fabry patients in Argentina. Clin Genet 69(4):344–348

    Article  PubMed  CAS  Google Scholar 

  48. Wherrett JR, Hakomori SI (1973) Characterization of a blood group B glycolipid, accumulating in the pancreas of a patient with Fabry’s disease. J Biol Chem 248(9):3046–3051

    PubMed  CAS  Google Scholar 

  49. Asfaw B, Ledvinova J, Dobrovolny R, Bakker HD, Desnick RJ, van Diggelen OP et al (2002) Defects in degradation of blood group A and B glycosphingolipids in Schindler and Fabry diseases. J Lipid Res 43(7):1096–1104

    Article  PubMed  CAS  Google Scholar 

  50. Mills K, Morris P, Lee P, Vellodi A, Waldek S, Young E et al (2005) Measurement of urinary CDH and CTH by tandem mass spectrometry in patients hemizygous and heterozygous for Fabry disease. J Inherit Metab Dis 28(1):35–48

    Article  PubMed  CAS  Google Scholar 

  51. Li SC, Kihara H, Serizawa S, Li YT, Fluharty AL, Mayes JS, Shapiro LJ (1985) Activator protein required for the enzymatic hydrolysis of cerebroside sulfate. Deficiency in urine if patients affected with cerebroside sulfatase activator deficiency and identity of activators for the enzymatic hydrolysis of GM1 ganglioside and globotriaosylceramide. J Biol Chem 260(3):1867–1871

    PubMed  CAS  Google Scholar 

  52. Kase R, Bierfreund U, Klein A, Kolter T, Itoh K, Suzuki M, Hashimoto Y, Sandhoff K, Sakuraba H (1996) Only sphingolipid protein B (SAP-B or saposin B) stimulates the degradation of globotriaosylceramide by recombinant human lysosomal alpha-galactosidase in a detergent-free liposomal system. FEBS Lett 393(1):74–76

    Article  PubMed  CAS  Google Scholar 

  53. Sandhoff K, Kolter T, Harzer K (2001) Sphingolipid activator proteins. In: Scriver CR, Beaudet AL, Sly D, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 3, 8th edn. McGraw-Hill, New York, pp 3371–3388

    Google Scholar 

  54. Paton BC, Schmid B, Kustermann-Kuhn B, Poulos A, Harzer K (1992) Additional biochemical findings in a patient and fetal sibling with a genetic defect in the sphingolipid activator protein (SAP) precursor, prosaposin. Evidence for a deficiency in SAP-1 and for a normal lysosomal neuraminidase. Biochem J 285(2):481–488

    PubMed  CAS  Google Scholar 

  55. Hulková H, Cervenková M, Ledvinová J, Tochácková M, Hrebícek M, Poupetová H et al (2001) A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet 10(9):927–940

    Article  PubMed  Google Scholar 

  56. Mills K, Eaton S, Ledger V, Young E, Winchester B (2005) The synthesis of internal standards for the quantitative determination of sphingolipids by tandem mass spectrometry. Rapid Commun Mass Spectrom 19(12):1739–1748

    Article  PubMed  CAS  Google Scholar 

  57. Fauler G, Rechberger GN, Devrnja D, Erwa W, Plecko B, Kotanko P et al (2005) Rapid determination of urinary globotriaosylceramide isoform profiles by electrospray ionization mass spectrometry using stearoyl-d35-globotriaosylceramide as internal standard. Rapid Commun Mass Spectrom 19(11):1499–1506

    Article  PubMed  CAS  Google Scholar 

  58. Young E, Mills K, Morris P, Vellodi A, Lee P, Waldek S, Winchester B (2005) Is globotriaosylceramide a useful biomarker in Fabry disease? Acta Paediatr Suppl 94(447):51–54

    Article  PubMed  CAS  Google Scholar 

  59. Kitagawa T, Ishige N, Suzuki K, Owada M, Ohashi T, Kobayashi M et al (2005) Non-invasive screening method for Fabry disease by measuring globotriaosylceramide in whole urine samples using tandem mass spectrometry. Mol Genet Metab 85(3):196–202

    Article  PubMed  CAS  Google Scholar 

  60. Rozenfeld PA, De Francesco NP, Borrajo GJC, Ceci R, Fossati CA (2009) An easy and sensitive method for determination of globotriaosylceramide (Gb3) from urinary sediment: utility for Fabry disease diagnosis and treatment monitoring. Clin Chim Acta 403(1–2):194–197

    Article  PubMed  CAS  Google Scholar 

  61. Forni S, Fu X, Schiffmann R, Sweetman L (2009) Falsely elevated urinary Gb3 (globotriaosylceramide, CTH, GL3). Mol Genet Metab 97(1):91

    Article  PubMed  CAS  Google Scholar 

  62. Auray-Blais C, Millington DS, Barr C, Young SP, Mills K, Clarke JT (2009) Gb(3)/creatinine biomarkers for Fabry disease: Issues to consider. Mol Genet Metab 97(3):237

    Article  PubMed  CAS  Google Scholar 

  63. Whitfield PD, Calvin J, Hogg S, O’Driscoll E, Halsall D, Burling K et al (2005) Monitoring enzyme replacement therapy in Fabry disease–role of urine globotriaosylceramide. J Inherit Metab Dis 28(1):21–33

    Article  PubMed  CAS  Google Scholar 

  64. Vedder AC, Linthorst GE, van Breemen MJ, Groener JE, Bemelman FJ, Strijland A et al (2007) The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis 30(1):68–78

    Article  PubMed  CAS  Google Scholar 

  65. Bekri S, Lidove O, Jaussaud R, Knebelmann B, Barbey F (2006) The role of ceramide trihexoside (globotriaosylceramide) in the diagnosis and follow-up of the efficacy of treatment of Fabry disease: a review of the literature. Cardiovasc Hematol Agents Med Chem 4(4):289–297

    Article  PubMed  CAS  Google Scholar 

  66. Roddy TP, Nelson BC, Sung CC, Araghi S, Wilkens D, Zhang XK et al (2005) Liquid chromatography-tandem mass spectrometry quantification of globotriaosylceramide in plasma for long-term monitoring of Fabry patients treated with enzyme replacement therapy. Clin Chem 51(1):237–240

    Article  PubMed  CAS  Google Scholar 

  67. Touboul D, Roy S, Germain DP, Baillet A, Brion F, Prognon P et al (2005) Fast fingerprinting by MALDI-TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem 382(5):1209–1216

    Article  PubMed  CAS  Google Scholar 

  68. Kitagawa T, Suzuki K, Ishige N, Ohashi T, Kobayashi M, Eto Y et al (2008) Non-invasive high-risk screening for Fabry disease hemizygotes and heterozygotes. Pediatr Nephrol 23(9):1461–1471

    Article  PubMed  Google Scholar 

  69. Auray-Blais C, Cyr D, Ntwari A, West ML, Cox-Brinkman J, Bichet DG et al (2008) Urinary globotriaosylceramide excretion correlates with the genotype in children and adults with Fabry disease. Mol Genet Metab 93(3):331–340

    Article  PubMed  CAS  Google Scholar 

  70. Fuller M, Sharp PC, Rozaklis T, Whitfield PD, Blacklock D, Hopwood JJ et al (2005) Urinary lipid profiling for the identification of Fabry hemizygotes and heterozygotes. Clin Chem 51(4):688–694

    Article  PubMed  CAS  Google Scholar 

  71. Vedder AC, Strijland A, vd Bergh Weerman MA, Florquin S, Aerts JM, Hollak CE (2006) Manifestations of Fabry disease in placental tissue. J Inherit Metab Dis 29(1):106–111

    Article  PubMed  CAS  Google Scholar 

  72. Kleijer WJ, Hussaarts-Odijk LM, Sachs ES, Jahoda MG, Niermeijer MF (1987) Prenatal diagnosis of Fabry’s disease by direct analysis of chorionic villi. Prenat Diagn 7(4):283–287

    Article  PubMed  CAS  Google Scholar 

  73. Brady RO, Uhlendorf BW, Jacobson CB (1971) Fabry’s disease: antenatal detection. Science 172(979):174–175

    Article  PubMed  CAS  Google Scholar 

  74. Desnick RJ (2007) Prenatal diagnosis of Fabry disease. Prenat Diagn 27(8):693–694

    Article  PubMed  Google Scholar 

  75. Raas-Rothschild A, Lacombe D (2008) Fabry disease prenatal diagnosis. Prenat Diagn 28:268

    Article  PubMed  Google Scholar 

  76. Bodamer O (2008) Newborn screening in Fabry disease: What can be achieved by early diagnosis? Clin Ther 30(Suppl B):S41

    Article  PubMed  Google Scholar 

  77. Meikle PJ, Hopwod JJ (2005) Newborn screening for lysosomal disoders: current issues and approaches. Current Med Lit 5(30):41–48

    Google Scholar 

  78. Fletcher JM (2006) Screening for lysosomal storage disorders–a clinical perspective. J Inherit Metab Dis 29(2–3):405–408

    Article  PubMed  Google Scholar 

  79. Millington D (2008) Rapid and effective screening for lysosomal storage disease; How close are we? Clin Chem 54(10):1592–1594

    Article  PubMed  CAS  Google Scholar 

  80. Olivova P, van der Veen K, Cullen E, Rose M, Zhang XK, Sims KB et al (2009) Effect of sample collection on α-galactosidase A enzyme activity measurements in dried blood spots on filter paper. Clin Chim Acta 403(1–2):159–162

    Article  PubMed  CAS  Google Scholar 

  81. Linthorst GE, Vedder AC, Aerts JMFG, Hollak CEM (2005) Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 353:201–203

    Article  PubMed  CAS  Google Scholar 

  82. Lukacs Z, Keil A, Kohlschutter A, Beck M, Mengel E (2005) The ratio of alpha-galactosidase to beta–glucuronidase activities in dried blood for the identification of female Fabry disease patients. J Inherit Metab Dis 28(5):803–805

    Article  PubMed  CAS  Google Scholar 

  83. Lukacs Z, Hartung R, Beck M, Keil A, Mengel E (2007) Direct comparison of enzyme measurements from dried blood spots and leukocytes from male and female Fabry disease patients. J Inherit Metab Dis 30(4):614

    Article  PubMed  CAS  Google Scholar 

  84. Spada M, Pagliardini S (2002) Screening for Fabry disease in end-stage nephropathies. J Inherit Metab Dis 25(Suppl 1):113

    Google Scholar 

  85. Poeppl AG, Murray GJ, Medin JA (2005) Enhanced filter paper enzyme assay for high-throughput population screening for Fabry disease. Anal Biochem 337:161–163

    Article  PubMed  CAS  Google Scholar 

  86. Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, Ponzone A, Desnick RJ (2006) High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 79(1):31–40

    Article  PubMed  CAS  Google Scholar 

  87. Hwu W-L, Chien Y-H, Lee N-C (2008) Screening for Pompe disease and Fabry disease. Clin Ther 30(Suppl C):S77

    Article  Google Scholar 

  88. Chien YH, Chiang SC, Zhang XK, Keutzer J, Lee NC, Huang AC et al (2008) Early detection of Pompe disease by newborn screening is feasible: results from the Taiwan screening program. Pediatrics 122(1):39–45

    Article  Google Scholar 

  89. Kemper AR, Hwu WL, Lloyd-Puryear M, Kishnani PS (2007) Newborn screening for Pompe disease: synthesis of the evidence and development of screening recommendations. Pediatrics 120(5):1327–1334

    Article  Google Scholar 

  90. Civallero G, Micheli K, De Mari J, Viapaina M, Burin M, Coelho JC, Giugliani R (2006) Twelve different enzyme assays on dried-blood filter paper samples for detection of patients with selected inherited lysosomal storage diseases. Clin Chim Acta 372:98–102

    Article  PubMed  CAS  Google Scholar 

  91. Kotanko P, Kramar R, Devrnja D, Paschke E, Voigtlander T, Auinger M et al (2004) Results of a nationwide screening for Anderson-Fabry disease among dialysis patients. J Am Soc Nephrol 15:1323–1329

    Article  PubMed  CAS  Google Scholar 

  92. Rolfs A, Bottcher T, Zschiesche M, Morris P, Winchester B, Bauer P et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366(9499):1794–1796

    Article  PubMed  Google Scholar 

  93. Fuller M, Lovejoy M, Brooks DA, Harkin ML, Hopwood JJ, Meikle PJ (2004) Immunoquantification of α-galactosidase: evaluation for the diagnosis of Fabry disease. Clin Chem 50:1979–1985

    Article  PubMed  CAS  Google Scholar 

  94. Li Y, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F, Gelb MH (2004) Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 50:1785–1796

    Article  PubMed  CAS  Google Scholar 

  95. Gelb MH, Turecek F, Scott CR, Chamoles NA (2006) Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders. J Inherit Metab Dis 29(2–3):397–404

    Article  PubMed  CAS  Google Scholar 

  96. Turecek F, Scott CR, Gelb MH (2007) Tandem mass spectrometry in the detection of inborn errors of metabolism for newborn screening. Methods Mol Biol 359:143–157

    Article  PubMed  CAS  Google Scholar 

  97. Zhang XK, Elbin CS, Chuang WL, Cooper SK, Marashio CA, Beauregard C, Keutzer JM (2008) Multiplex enzyme assay screening of dried blood spots for lysosomal storage disorders by using tandem mass spectrometry. Clin Chem 54(10):1725–1728

    Article  PubMed  CAS  Google Scholar 

  98. De Jesus VR, Zhang XK, Keutzer J, Bodamer O, Muhl A, Orsini JJ et al (2009) Development and evaluation of quality control dried blood spot materials in newborn screening for lysosomal storage diseases. Clin Chem 55(1):158–164

    Article  PubMed  CAS  Google Scholar 

  99. la Marca G, Casetta B, Malvagia S, Guerrini R, Zammarchi E (2009) New strategy for the screening of lysosomal storage disorders: the use of the online trapping-and-cleanup liquid chromatography/mass spectrometry. Anal Chem 81(15):6113–6121

    Google Scholar 

  100. Auray-Blais C, Cyr D, Drouin R (2007) Quebec neonatal mass urinary screening programme: From micromolecules to macromolecules. J Inherit Metab Dis 30(1):515–521

    Article  PubMed  CAS  Google Scholar 

  101. Auray-Blais C, Millington DS, Young SP, Clarke JT, Schiffmann R (2009) Proposed high-risk screening protocol for Fabry disease in patients with renal and vascular disease. J Inherit Metab Dis 32(2):303–308

    Article  PubMed  CAS  Google Scholar 

  102. Barr C, Clarke JT, Ntwari A, Drouin R, Auray-Blais C (2009) Fabry disease urinary globotriaosylceramide/creatinine biomarker evaluation by liquid chromatography-tandem mass spectrometry in healthy infants from birth to 6 months. Mol Genet Metab 97(3):237

    Article  PubMed  CAS  Google Scholar 

  103. Meikle PJ, Grasby DJ, Dean CJ, Lang DL, Bockmann M, Whittle AM et al (2006) Newborn screening for lysosomal storage disorders. Mol Genet Metab 88(4):307–314

    Article  PubMed  CAS  Google Scholar 

  104. Matern S (2008) Newborn screening for lysosomal storage diseases. Acta Paediatr 97:33–37

    Article  Google Scholar 

  105. Stevens WS, Noble L, Berrie L, Sarang S, Scott LE (2009) Ultra-high throughput, automated nucleic acid detection of HIV for infant diagnosis using the GEN-PROBE APTIMA HIV-1 Screening Assay. J Clin Microbiol 47(8):2465–2469

    Article  PubMed  Google Scholar 

  106. Mérelle ME, Scheffer H, De Jong D, Dankert-Roelse JE (2006) Extended gene analysis can increase specificity of neonatal screening for cystic fibrosis. Acta Paediatr 95(11):1424–1428

    Article  PubMed  Google Scholar 

  107. Zschocke J, Kebbewar M, Gan-Schreier H, Fischer C, Fang-Hoffmann J, Wilrich J et al (2009) Molecular neonatal screening for homocystinuria in the Qatari population. Hum Mutat 30(6):1021–1022

    Article  PubMed  CAS  Google Scholar 

  108. Kumamoto S, Katafuchi T, Nakamura K, Endo F, Oda E, Okuyama T et al (2009) High frequency of acid alpha-glucosidase pseudodeficiency complicates newborn screening for glycogen storage disease type II in the Japanese population. Mol Genet Metab 97(3):190–195

    Article  PubMed  CAS  Google Scholar 

  109. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed  CAS  Google Scholar 

  110. Altarescu G, Moore DF, Schiffmann R (2005) Effect of genetic modifiers on cerebral lesions in Fabry disease. Neurology 64(12):2148–2150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the experience and dedication of our colleagues in the Enzyme Diagnostic Laboratory at Great Ormond Street Hospital, London, and in the research laboratories at the Institute of Child Health, particularly Dr. Kevin Mills, with whom we worked for many years and without whom this chapter could not have been written. We would also like to thank Dr. Olaf Bodamer for providing us with his unpublished data on the measurement of α-galactosidase activity in dried blood spots using a novel substrate and mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Winchester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Winchester, B., Young, E. (2010). Laboratory Diagnosis of Fabry Disease. In: Elstein, D., Altarescu, G., Beck, M. (eds) Fabry Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9033-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9033-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9032-4

  • Online ISBN: 978-90-481-9033-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics