Skip to main content

Biochemistry of Fabry Disease

  • Chapter
  • First Online:
Fabry Disease

Abstract

Fabry disease is a sphingolipid storage disorder resulting from a deficiency of the lysosomal hydrolase, α-galactosidase A. The deficiency leads to lysosomal accumulation of α-galactosidase A substrates, neutral glycosphingolipids with terminal α-galactosyl moieties, in multiple tissues. Globotriaosylceramide (Gb3Cer, CD77), the critical substrate of α-galactosidase A, is involved in cell signaling and associates itself with lipid rafts in the plasma membrane, where it also functions as a receptor for the Shiga-like toxins of E. Coli. Possible roles of Gb3Cer accumulation in the pathogenesis of Fabry disease, as well as biochemistry and function of minor α-galactosidase A substrates are discussed. There are two human lysosomal enzymes with the ability to hydrolyze substrates with terminal α-galactose, α-galactosidase A and α-N-acetylgalactosaminidase (NAGA). Both enzymes are active in vitro against saccharide, glycolipid and artificial substrates. α-N-acetylgalactosaminidase’s primary function appears to be hydrolysis of acetylated oligosaccharides and glycopeptides, while α-galactosidase A is the enzyme responsible for degradation of glycolipid substrates. α-Galactosidase A requires an activator protein, saposin B, for its activity in vivo. Properties of the above proteins and the biochemistry of their deficiencies in humans are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnaar R, Suzuki A, Stanley P (2009) Glycosphingolipids. In: Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (eds) Essentials of glycobiology, 2nd edn. CSHL Press America, Plainview. Available from http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=glyco2

    Google Scholar 

  2. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  PubMed  CAS  Google Scholar 

  3. Hoetzl S, Sprong H, van Meer G (2007) The way we view cellular (glyco)sphingolipids. J Neurochem 103(Suppl 1):3–13

    Article  PubMed  CAS  Google Scholar 

  4. Prinetti A, Loberto N, Chigorno V, Sonnino S (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788(1):184–193

    Article  PubMed  CAS  Google Scholar 

  5. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  CAS  Google Scholar 

  6. Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118(Pt 20):4605–4612

    Article  PubMed  CAS  Google Scholar 

  7. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758(12):2016–2026

    Article  PubMed  CAS  Google Scholar 

  8. Lebman DA, Spiegel S (2008) Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling. J Lipid Res 49(7):1388–1394

    Article  PubMed  CAS  Google Scholar 

  9. Schenkel-Brunner H (2000) Human blood groups. Chemical and biochemical basis of antigen specificity, 2nd edn. Springer, Wien, pp 273–303

    Book  Google Scholar 

  10. Taga S, Carlier K, Mishal Z, Capoulade C, Mangeney M, Lécluse Y et al (1997) Intracellular signaling events in CD77-mediated apoptosis of Burkitt’s lymphoma cells. Blood 90(7):2757–2767

    PubMed  CAS  Google Scholar 

  11. Wiels J, Holmes EH, Cochran N, Tursz T, Hakomori S (1984) Enzymatic and organizational difference in expression of a Burkitt lymphoma-associated antigen (globotriaosylceramide) in Burkitt lymphoma and lymphoblastoid cell lines. J Biol Chem 259(23):14783–14787

    PubMed  CAS  Google Scholar 

  12. Wiels J (2000) CD77. J Biol Regul Homeost Agents 14(4):288–289

    Google Scholar 

  13. George T, Boyd B, Price M, Lingwood C, Maloney M (2001) MHC class II proteins contain a potential binding site for the verotoxin receptor glycolipid CD77. Cell Mol Biol (Noisy-le-grand) 47(7):1179–1185

    CAS  Google Scholar 

  14. Khine AA, Firtel M, Lingwood CA (1998) CD77-dependent retrograde transport of CD19 to the nuclear membrane: functional relationship between CD77 and CD19 during germinal center B-cell apoptosis. J Cell Physiol 176(2):281–292

    Article  PubMed  CAS  Google Scholar 

  15. Maloney MD, Lingwood CA (1994) CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. J Exp Med 180(1):191–201

    Article  PubMed  CAS  Google Scholar 

  16. Mori T, Kiyokawa N, Katagiri YU, Taguchi T, Suzuki T, Sekino T et al (2000) Globotriaosyl ceramide (CD77/Gb3) in the glycolipid-enriched membrane domain participates in B-cell receptor-mediated apoptosis by regulating lyn kinase activity in human B cells. Exp Hematol 28(11):1260–1268

    Article  PubMed  CAS  Google Scholar 

  17. Lingwood CA (1996) Role of verotoxin receptors in pathogenesis. Trends Microbiol 4(4):147–153

    Article  PubMed  CAS  Google Scholar 

  18. Müthing J, Schweppe CH, Karch H, Friedrich AW (2009) Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb Haemost 101(2):252–264

    PubMed  Google Scholar 

  19. Lingwood CA, Khine AA, Arab S (1998) Globotriaosyl ceramide (Gb3) expression in human tumour cells: intracellular trafficking defines a new retrograde transport pathway from the cell surface to the nucleus, which correlates with sensitivity to verotoxin. Acta Biochim Pol 45(2):351–359

    PubMed  CAS  Google Scholar 

  20. Lingwood CA (1998) Oligosaccharide receptors for bacteria: a view to a kill. Curr Opin Chem Biol 2(6):695–700

    Article  PubMed  CAS  Google Scholar 

  21. Johansson D, Kosovac E, Moharer J, Ljuslinder I, Brännström T, Johansson A et al (2009) Expression of verotoxin-1 receptor Gb3 in breast cancer tissue and verotoxin-1 signal transduction to apoptosis. BMC Cancer 9:67

    Article  PubMed  CAS  Google Scholar 

  22. Hulková H, Cervenková M, Ledvinová J, Tochácková M, Hrebícek M, Poupetová H et al (2001) A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet 10(9):927–940

    Article  PubMed  Google Scholar 

  23. Desnick R, Ioannou Y, Eng C (2001) Alpha-galactosidase A deficiency: Fabry disease. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3733–3774

    Google Scholar 

  24. Dawson G, Sweeley CC (1970) In vivo studies on glycosphingolipid metabolism in porcine blood. J Biol Chem 245(2):410–416

    PubMed  CAS  Google Scholar 

  25. Mills K, Johnson A, Winchester B (2002) Synthesis of novel internal standards for the quantitative determination of plasma ceramide trihexoside in Fabry disease by tandem mass spectrometry. FEBS Lett 515(1–3):171–176

    Article  PubMed  CAS  Google Scholar 

  26. Young E, Mills K, Morris P, Vellodi A, Lee P, Waldek S et al (2005) Is globotriaosylceramide a useful biomarker in Fabry disease? Acta Paediatr Suppl 94(447):51–54, discussion 37–8

    Article  PubMed  CAS  Google Scholar 

  27. Vance DE, Krivit W, Sweeley CC (1975) Metabolism of neutral glycosphingolipids in plasma of a normal human and a patient with Fabry’s disease. J Biol Chem 250(20):8119–8125

    PubMed  CAS  Google Scholar 

  28. Dawson G, Kruski AW, Scanu AM (1976) Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J Lipid Res 17(2):125–131

    PubMed  CAS  Google Scholar 

  29. Loeb JA, Dawson G (1982) Reversible exchange of glycosphingolipids between human high and low density lipoproteins. J Biol Chem 257(20):11982–11987

    PubMed  CAS  Google Scholar 

  30. Chatterjee S, Kwiterovich POJ (1984) Glycosphingolipids and plasma lipoproteins: a review. Can J Biochem Cell Biol 62(6):385–397

    Article  PubMed  CAS  Google Scholar 

  31. Clarke JT, Stoltz JM, Mulcahey MR (1976) Neutral glycosphingolipids of serum lipoproteins in Fabry’s disease. Biochim Biophys Acta 431(2):317–325

    Article  PubMed  CAS  Google Scholar 

  32. Clarke JT (1981) The glycosphingolipids of human plasma lipoproteins. Can J Biochem 59(6):412–417

    Article  PubMed  CAS  Google Scholar 

  33. DeGraba T, Azhar S, Dignat-George F, Brown E, Boutière B, Altarescu G et al (2000) Profile of endothelial and leukocyte activation in Fabry patients. Ann Neurol 47(2):229–233

    Article  PubMed  CAS  Google Scholar 

  34. Shen J, Meng X, Moore DF, Quirk JM, Shayman JA, Schiffmann R et al (2008) Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 95(3):163–168

    Article  PubMed  CAS  Google Scholar 

  35. Park JL, Whitesall SE, D’Alecy LG, Shu L, Shayman JA (2008) Vascular dysfunction in the alpha-galactosidase A-knockout mouse is an endothelial cell-, plasma membrane-based defect. Clin Exp Pharmacol Physiol 35(10):1156–1163

    Article  PubMed  CAS  Google Scholar 

  36. Park JL, Shu L, Shayman JA (2009) Differential involvement of COX1 and COX2 in the vasculopathy associated with the alpha-galactosidase A-knockout mouse. Am J Physiol Heart Circ Physiol 296(4):H1133–H1140

    Article  PubMed  CAS  Google Scholar 

  37. Shu L, Park JL, Byun J, Pennathur S, Kollmeyer J, Shayman JA (2009) Decreased nitric oxide bioavailability in a mouse model of Fabry disease. J Am Soc Nephrol 20(9):1975–1985

    Article  PubMed  CAS  Google Scholar 

  38. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R et al (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA 105(8):2812–2817

    Article  PubMed  CAS  Google Scholar 

  39. Desnick RJ, Dawson G, Desnick SJ, Sweeley CC, Krivit W (1971) Diagnosis of glycosphingolipidoses by urinary-sediment analysis. N Engl J Med 284(14):739–744

    Article  PubMed  CAS  Google Scholar 

  40. Chatterjee S, Gupta P, Pyeritz RE, Kwiterovich POJ (1984) Immunohistochemical localization of glycosphingolipid in urinary renal tubular cells in Fabry’s disease. Am J Clin Pathol 82(1):24–28

    PubMed  CAS  Google Scholar 

  41. Fauler G, Rechberger GN, Devrnja D, Erwa W, Plecko B, Kotanko P et al (2005) Rapid determination of urinary globotriaosylceramide isoform profiles by electrospray ionization mass spectrometry using stearoyl-d35-globotriaosylceramide as internal standard. Rapid Commun Mass Spectrom 19(11):1499–1506

    Article  PubMed  CAS  Google Scholar 

  42. Fuller M, Sharp PC, Rozaklis T, Whitfield PD, Blacklock D, Hopwood JJ et al (2005) Urinary lipid profiling for the identification of fabry hemizygotes and heterozygotes. Clin Chem 51(4):688–694

    Article  PubMed  CAS  Google Scholar 

  43. Kitagawa T, Ishige N, Suzuki K, Owada M, Ohashi T, Kobayashi M et al (2005) Non-invasive screening method for Fabry disease by measuring globotriaosylceramide in whole urine samples using tandem mass spectrometry. Mol Genet Metab 85(3):196–202

    Article  PubMed  CAS  Google Scholar 

  44. Chatterjee S, Clarke KS, Kwiterovich POJ (1986) Uptake and metabolism of lactosylceramide on low density lipoproteins in cultured proximal tubular cells from normal and familial hypercholesterolemic homozygotes. J Biol Chem 261(29):13480–13486

    PubMed  CAS  Google Scholar 

  45. Pastores GM, Lien YH (2002) Biochemical and molecular genetic basis of Fabry disease. J Am Soc Nephrol 13(Suppl 2):S130–S133

    PubMed  CAS  Google Scholar 

  46. Touboul D, Roy S, Germain DP, Baillet A, Brion F, Prognon P et al (2005) Fast fingerprinting by MALDI-TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem 382(5):1209–1216

    Article  PubMed  CAS  Google Scholar 

  47. Kuchar L, Hlavata J, Asfaw B, Ledvinova J (2008) MS/MS sphingolipid profilig-useful diagnostic tool in disorders with Gb3Cer and sulphatide storage. J Inherit Metab Dis 31(Suppl 1):107

    Google Scholar 

  48. Kuchar L, Ledvinová J, Hrebícek M, Mysková H, Dvoráková L, Berná L et al (2009) Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet A 149A(4):613–621

    Article  PubMed  CAS  Google Scholar 

  49. Linthorst GE, Folman CC, Aerts JMFG, Hollak CEM (2003) Blood group does not correlate with disease severity in patients with Fabry disease (alpha-galactosidase A deficiency). Blood Cells Mol Dis 31(3):324–326

    Article  PubMed  CAS  Google Scholar 

  50. Wherrett JR, Hakomori SI (1973) Characterization of a blood group B glycolipid, accumulating in the pancreas of a patient with Fabry’s disease. J Biol Chem 248(9):3046–3051

    PubMed  CAS  Google Scholar 

  51. Ledvinová J, Poupetová H, Hanácková A, Písacka M, Elleder M (1997) Blood group B glycosphingolipids in alpha-galactosidase deficiency (Fabry disease): influence of secretor status. Biochim Biophys Acta 1345(2):180–187

    Article  PubMed  Google Scholar 

  52. Schenkel-Brunner H (2000) Human blood groups: chemical and biochemical basis of antigen specificity, 2nd edn. Springer, Wien, pp 54–183

    Book  Google Scholar 

  53. Mills K, Vellodi A, Morris P, Cooper D, Morris M, Young E et al (2004) Monitoring the clinical and biochemical response to enzyme replacement therapy in three children with Fabry disease. Eur J Pediatr 163(10):595–603

    PubMed  CAS  Google Scholar 

  54. Stanley P, Cummings R (2009) Structures common to different glycans. In: Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (eds) Essentials of glycobiology, 2nd edn. CSHL Press America, Plainview. Available from http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=glyco2

    Google Scholar 

  55. Li Y, Teneberg S, Thapa P, Bendelac A, Levery SB, Zhou D (2008) Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry. Glycobiology 18(2):158–165

    Article  PubMed  CAS  Google Scholar 

  56. Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N et al (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 104(51):20490–20495

    Article  PubMed  CAS  Google Scholar 

  57. Speak AO, Salio M, Neville DCA, Fontaine J, Priestman DA, Platt N et al (2007) Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci USA 104(14):5971–5976

    Article  PubMed  CAS  Google Scholar 

  58. Tettamanti G, Bassi R, Viani P, Riboni L (2003) Salvage pathways in glycosphingolipid metabolism. Biochimie 85(3–4):423–437

    Article  PubMed  CAS  Google Scholar 

  59. Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20(5):301–317

    Article  PubMed  CAS  Google Scholar 

  60. Futerman AH (2006) Intracellular trafficking of sphingolipids: relationship to biosynthesis. Biochim Biophys Acta 1758(12):1885–1892

    Article  PubMed  CAS  Google Scholar 

  61. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(6968):803–809

    Article  PubMed  CAS  Google Scholar 

  62. Neumann S, van Meer G (2008) Sphingolipid management by an orchestra of lipid transfer proteins. Biol Chem 389(11):1349–1360

    Article  PubMed  CAS  Google Scholar 

  63. Schulze H, Kolter T, Sandhoff K (2009) Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation. Biochim Biophys Acta 1793(4):674–683

    Article  PubMed  CAS  Google Scholar 

  64. Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y (1996) Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci USA 93(22):12654

    PubMed  CAS  Google Scholar 

  65. Futerman AH, Pagano RE (1991) Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 280(Pt 2):295–302

    PubMed  CAS  Google Scholar 

  66. Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117(2):259–267

    Article  PubMed  CAS  Google Scholar 

  67. Nomura T, Takizawa M, Aoki J, Arai H, Inoue K, Wakisaka E et al (1998) Purification, cDNA cloning, and expression of UDP-Gal: glucosylceramide beta-1,4-galactosyltransferase from rat brain. J Biol Chem 273(22):13570–13577

    Article  PubMed  CAS  Google Scholar 

  68. D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A et al (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449(7158):62–67

    Article  PubMed  CAS  Google Scholar 

  69. Futerman AH (2007) Cell biology: taxi service for lipids. Nature 449(7158):35–37

    Article  PubMed  CAS  Google Scholar 

  70. Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Mazière AM, Vieira OV et al (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179(1):101–115

    Article  PubMed  CAS  Google Scholar 

  71. Yamaji T, Kumagai K, Tomishige N, Hanada K (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60(8):511–518

    Article  PubMed  CAS  Google Scholar 

  72. Maccioni HJF, Giraudo CG, Daniotti JL (2002) Understanding the stepwise synthesis of glycolipids. Neurochem Res 27(7–8):629–636

    Article  PubMed  CAS  Google Scholar 

  73. Furukawa K, Iwamura K, Uchikawa M, Sojka BN, Wiels J, Okajima T et al (2000) Molecular basis for the p phenotype. Identification of distinct and multiple mutations in the alpha 1,4-galactosyltransferase gene in Swedish and Japanese individuals. J Biol Chem 275(48):37752–37756

    Article  PubMed  CAS  Google Scholar 

  74. Kojima Y, Fukumoto S, Furukawa K, Okajima T, Wiels J, Yokoyama K et al (2000) Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem 275(20):15152–15156

    Article  PubMed  CAS  Google Scholar 

  75. Fujii Y, Numata S, Nakamura Y, Honda T, Furukawa K, Urano T et al (2005) Murine glycosyltransferases responsible for the expression of globo-series glycolipids: cDNA structures, mRNA expression, and distribution of their products. Glycobiology 15(12):1257–1267

    Article  PubMed  CAS  Google Scholar 

  76. Iwamura K, Furukawa K, Uchikawa M, Sojka BN, Kojima Y, Wiels J et al (2003) The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. A clue to the solution of the P1/P2/p puzzle. J Biol Chem 278(45):44429–44438

    Article  PubMed  CAS  Google Scholar 

  77. Duk M, Westerlind U, Norberg T, Pazynina G, Bovin NN, Lisowska E (2003) Specificity of human anti-NOR antibodies, a distinct species of “natural” anti-alpha-galactosyl antibodies. Glycobiology 13(4):279–284

    Article  PubMed  CAS  Google Scholar 

  78. Zhou D, Mattner J, Cantu C III, Schrantz N, Yin N, Gao Y et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306(5702):1786–1789

    Article  PubMed  CAS  Google Scholar 

  79. Christiansen D, Milland J, Mouhtouris E, Vaughan H, Pellicci DG, McConville MJ et al (2008) Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 6(7):e172

    Article  PubMed  CAS  Google Scholar 

  80. Zajonc DM, Savage PB, Bendelac A, Wilson IA, Teyton L (2008) Crystal structures of mouse CD1d-iGb3 complex and its cognate Valpha14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J Mol Biol 377(4):1104–1116

    Article  PubMed  CAS  Google Scholar 

  81. Kolter T, Sandhoff K (2006) Sphingolipid metabolism diseases. Biochim Biophys Acta 1758(12):2057–2079

    Article  PubMed  CAS  Google Scholar 

  82. Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103

    Article  PubMed  CAS  Google Scholar 

  83. Harzer K, Paton BC, Poulos A, Kustermann-Kuhn B, Roggendorf W, Grisar T et al (1989) Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr 149(1):31–39

    Article  PubMed  CAS  Google Scholar 

  84. Remmel N, Locatelli-Hoops S, Breiden B, Schwarzmann G, Sandhoff K (2007) Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. Unglycosylated patient variant saposin B lacks lipid-extraction capacity. FEBS J 274(13):3405–3420

    Article  PubMed  CAS  Google Scholar 

  85. Sandhoff K, Kolter T, Harzer K (2001) Sphingolipid activator proteins. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3371–3388

    Google Scholar 

  86. Kint JA (1970) Fabry’s disease: alpha-galactosidase deficiency. Science 167(922):1268–1269

    Article  PubMed  CAS  Google Scholar 

  87. Kint JA (1971) On the existence and the enzymic interconversion of the isozymes of alpha-galactosidase in human organs. Arch Int Physiol Biochim 79(3):633–634

    PubMed  CAS  Google Scholar 

  88. Beutler E, Kuhl W (1972) Biochemical and electrophoretic studies of -galactosidase in normal man, in patients with Fabry’s disease, and in Equidae. Am J Hum Genet 24(3):237–249

    PubMed  CAS  Google Scholar 

  89. Desnick RJ, Allen KY, Desnick SJ, Raman MK, Bernlohr RW, Krivit W (1973) Fabry’s disease: enzymatic diagnosis of hemizygotes and heterozygotes. Alpha-galactosidase activities in plasma, serum, urine, and leukocytes. J Lab Clin Med 81(2):157–171

    PubMed  CAS  Google Scholar 

  90. Rietra PJ, Van den Bergh FA, Tager JM (1975) Properties of the residual alpha-galactosidase activity in the tissues of a Fabry hemizygote. Clin Chim Acta 62(3):401–413

    Article  PubMed  CAS  Google Scholar 

  91. Bishop DF, Desnick RJ (1981) Affinity purification of alpha-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. Properties of the purified splenic enzyme compared to other forms. J Biol Chem 256(3):1307–1316

    PubMed  CAS  Google Scholar 

  92. Dean KJ, Sweeley CC (1979) Studies on human liver alpha-galactosidases. II. Purification and enzymatic properties of alpha-galactosidase B (alpha-N-acetylgalactosaminidase). J Biol Chem 254(20):10001–10005

    PubMed  CAS  Google Scholar 

  93. Dean KJ, Sweeley CC (1979) Studies on human liver alpha-galactosidases. I. Purification of alpha-galactosidase A and its enzymatic properties with glycolipid and oligosaccharide substrates. J Biol Chem 254(20):9994–10000

    PubMed  CAS  Google Scholar 

  94. Dean KJ, Sung SS, Sweeley CC (1977) The identification of alpha-galactosidase B from human liver as an alpha-N-acetylgalactosaminidase. Biochem Biophys Res Commun 77(4):1411–1417

    Article  PubMed  CAS  Google Scholar 

  95. Schram AW, Hamers MN, Tager JM (1977) The identity of alpha-galactosidase B from human liver. Biochim Biophys Acta 482(1):138–144

    Article  PubMed  CAS  Google Scholar 

  96. Wang AM, Bishop DF, Desnick RJ (1990) Human alpha-N-acetylgalactosaminidase-molecular cloning, nucleotide sequence, and expression of a full-length cDNA. Homology with human alpha-galactosidase A suggests evolution from a common ancestral gene. J Biol Chem 265(35):21859–21866

    PubMed  CAS  Google Scholar 

  97. Hujová J, Sikora J, Dobrovolný R, Poupetová H, Ledvinová J, Kostrouchová M et al (2005) Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate alpha-galactosidase and alpha-N-acetylgalactosaminidase. BMC Cell Biol 6(1):5

    Article  PubMed  CAS  Google Scholar 

  98. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644

    Article  PubMed  CAS  Google Scholar 

  99. Mayes JS, Scheerer JB, Sifers RN, Donaldson ML (1981) Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry’s disease. Clin Chim Acta 112(2):247–251

    Article  PubMed  CAS  Google Scholar 

  100. Garman SC, Garboczi DN (2002) Structural basis of Fabry disease. Mol Genet Metab 77(1–2):3–11

    Article  PubMed  CAS  Google Scholar 

  101. Matsuura F, Ohta M, Ioannou YA, Desnick RJ (1998) Human alpha-galactosidase A: characterization of the N-linked oligosaccharides on the intracellular and secreted glycoforms overexpressed by Chinese hamster ovary cells. Glycobiology 8(4):329–339

    Article  PubMed  CAS  Google Scholar 

  102. Ioannou YA, Zeidner KM, Grace ME, Desnick RJ (1998) Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J 332(Pt 3):789–797

    PubMed  CAS  Google Scholar 

  103. Eng CM, Resnick-Silverman LA, Niehaus DJ, Astrin KH, Desnick RJ (1993) Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet 53(6):1186–1197

    PubMed  CAS  Google Scholar 

  104. Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119(5):1137–1150

    Article  PubMed  CAS  Google Scholar 

  105. Lemansky P, Bishop DF, Desnick RJ, Hasilik A, von Figura K (1987) Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem 262(5):2062–2065

    PubMed  CAS  Google Scholar 

  106. Keslová-Veselíková J, Hůlková H, Dobrovolný R, Asfaw B, Poupetová H, Berná L et al (2008) Replacement of alpha-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients. Virchows Arch 452(6):651–665

    Article  PubMed  CAS  Google Scholar 

  107. Mayes JS, Cray EL, Dell VA, Scheerer JB, Sifers RN (1982) Endocytosis of lysosomal alpha-galactosidase A by cultured fibroblasts from patients with Fabry disease. Am J Hum Genet 34(4):602–610

    PubMed  CAS  Google Scholar 

  108. Beutler E, Kuhl W (1972) Purification and properties of human alpha-galactosidases. J Biol Chem 247(22):7195–7200

    PubMed  CAS  Google Scholar 

  109. Ishii S, Chang H, Kawasaki K, Yasuda K, Wu H, Garman SC et al (2007) Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406(2):285–295

    Article  PubMed  CAS  Google Scholar 

  110. Ishii S, Kase R, Sakuraba H, Suzuki Y (1993) Characterization of a mutant alpha-galactosidase gene product for the late-onset cardiac form of Fabry disease. Biochem Biophys Res Commun 197(3):1585–1589

    Article  PubMed  CAS  Google Scholar 

  111. Kase R, Bierfreund U, Klein A, Kolter T, Utsumi K, Itoha K et al (2000) Characterization of two alpha-galactosidase mutants (Q279E and R301Q) found in an atypical variant of Fabry disease. Biochim Biophys Acta 1501(2–3):227–235

    PubMed  CAS  Google Scholar 

  112. Fan J, Ishii S (2007) Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme inhibitors. FEBS J 274(19):4962–4971

    Article  PubMed  CAS  Google Scholar 

  113. Froissart R, Guffon N, Vanier MT, Desnick RJ, Maire I (2003) Fabry disease: D313Y is an alpha-galactosidase A sequence variant that causes pseudodeficient activity in plasma. Mol Genet Metab 80(3):307–314

    Article  PubMed  CAS  Google Scholar 

  114. Bach G, Rosenmann E, Karni A, Cohen T (1982) Pseudodeficiency of alpha-galactosidase A. Clin Genet 21(1):59–64

    Article  PubMed  CAS  Google Scholar 

  115. Elleder M, Bradová V, Smíd F, Budĕsínský M, Harzer K, Kustermann-Kuhn B et al (1990) Cardiocyte storage and hypertrophy as a sole manifestation of Fabry’s disease. Report on a case simulating hypertrophic non-obstructive cardiomyopathy. Virchows Arch A Pathol Anat Histopathol 417(5):449–455

    Article  PubMed  CAS  Google Scholar 

  116. Kobayashi T, Kira J, Shinnoh N, Goto I, Kuroiwa Y (1985) Fabry’s disease with partially deficient hydrolysis of ceramide trihexoside. J Neurol Sci 67(2):179–185

    Article  PubMed  CAS  Google Scholar 

  117. Yasuda M, Shabbeer J, Benson SD, Maire I, Burnett RM, Desnick RJ (2003) Fabry disease: characterization of alpha-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele. Hum Mutat 22(6):486–492

    Article  PubMed  CAS  Google Scholar 

  118. Kase R, Bierfreund U, Klein A, Kolter T, Itoh K, Suzuki M et al (1996) Only sphingolipid activator protein B (SAP-B or saposin B) stimulates the degradation of globotriaosylceramide by recombinant human lysosomal alpha-galactosidase in a detergent-free liposomal system. FEBS Lett 393(1):74–76

    Article  PubMed  CAS  Google Scholar 

  119. Hahn AF, Gordon BA, Hinton GG, Gilbert JJ (1982) A variant form of metachromatic leukodystrophy without arylsulfatase deficiency. Ann Neurol 12(1): 33–36

    Article  PubMed  CAS  Google Scholar 

  120. Schlote W, Harzer K, Christomanou H, Paton BC, Kustermann-Kuhn B, Schmid B et al (1991) Sphingolipid activator protein 1 deficiency in metachromatic leucodystrophy with normal arylsulphatase A activity. A clinical, morphological, biochemical, and immunological study. Eur J Pediatr 150(8):584–591

    Article  PubMed  CAS  Google Scholar 

  121. Shapiro LJ, Aleck KA, Kaback MM, Itabashi H, Desnick RJ, Brand N et al (1979) Metachromatic leukodystrophy without arylsulfatase A deficiency. Pediatr Res 13(10):1179–1181

    Article  PubMed  CAS  Google Scholar 

  122. Henseler M, Klein A, Reber M, Vanier MT, Landrieu P, Sandhoff K (1996) Analysis of a splice-site mutation in the sap-precursor gene of a patient with metachromatic leukodystrophy. Am J Hum Genet 58(1):65–74

    PubMed  CAS  Google Scholar 

  123. Li SC, Kihara H, Serizawa S, Li YT, Fluharty AL, Mayes JS et al (1985) Activator protein required for the enzymatic hydrolysis of cerebroside sulfate. Deficiency in urine of patients affected with cerebroside sulfatase activator deficiency and identity with activators for the enzymatic hydrolysis of GM1 ganglioside and globotriaosylceramide. J Biol Chem 260(3):1867–1871

    PubMed  CAS  Google Scholar 

  124. Bradová V, Smíd F, Ulrich-Bott B, Roggendorf W, Paton BC, Harzer K (1993) Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet 92(2):143–152

    Article  PubMed  Google Scholar 

  125. Schnabel D, Schröder M, Fürst W, Klein A, Hurwitz R, Zenk T et al (1992) Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem 267(5):3312–3315

    PubMed  CAS  Google Scholar 

  126. Asfaw B, Ledvinová J, Dobrovolny R, Bakker HD, Desnick RJ, van Diggelen OP et al (2002) Defects in degradation of blood group A and B glycosphingolipids in Schindler and Fabry diseases. J Lipid Res 43(7):1096–1104

    Article  PubMed  CAS  Google Scholar 

  127. Yuan W, Qi X, Tsang P, Kang S, Illarionov PA, Besra GS et al (2007) Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci USA 104(13):5551–5556

    Article  PubMed  CAS  Google Scholar 

  128. Ahn VE, Faull KF, Whitelegge JP, Fluharty AL, Prive GG (2003) Crystal structure of saposin B reveals a dimeric shell for lipid binding. Proc Natl Acad Sci USA 100(1):38–43

    Article  PubMed  CAS  Google Scholar 

  129. Stokeley D, Bemporad D, Gavaghan D, Sansom MSP (2007) Conformational dynamics of a lipid-interacting protein: MD simulations of saposin B. Biochemistry 46(47):13573–13580

    Article  PubMed  CAS  Google Scholar 

  130. Li SC, Sonnino S, Tettamanti G, Li YT (1988) Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids. J Biol Chem 263(14):6588–6591

    PubMed  CAS  Google Scholar 

  131. Vogel A, Schwarzmann G, Sandhoff K (1991) Glycosphingolipid specificity of the human sulfatide activator protein. Eur J Biochem 200(2):591–597

    Article  PubMed  CAS  Google Scholar 

  132. Bruhn H (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389(Pt 2):249–257

    PubMed  CAS  Google Scholar 

  133. Desnick R, Schindler D (2001) Alpha-N-Acetylgalactosaminidase deficiency: Schindler disease. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3483–3505

    Google Scholar 

  134. Asfaw B, Schindler D, Ledvinová J, Cerný B, Smíd F, Conzelmann E (1998) Degradation of blood group A glycolipid A-6-2 by normal and mutant human skin fibroblasts. J Lipid Res 39(9):1768–1780

    PubMed  CAS  Google Scholar 

  135. Bakker HD, de Sonnaville ML, Vreken P, Abeling NG, Groener JE, Keulemans JL et al (2001) Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy? Eur J Hum Genet 9(2):91–96

    Article  PubMed  CAS  Google Scholar 

  136. Vyletal P, Hulková H, Zivná M, Berna L, Novak P, Elleder M et al (2008) Abnormal expression and processing of uromodulin in Fabry disease reflects tubular cell storage alteration and is reversible by enzyme replacement therapy. J Inherit Metab Dis 31(4):508–517

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Klaus Harzer and Dr. František Šmíd for critically commenting on the manuscript. The support of the Ministry of Education, Youth, and Sports of the Czech Republic (Grant No. MSM 0021620806) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hřebíček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Hřebíček, M., Ledvinová, J. (2010). Biochemistry of Fabry Disease. In: Elstein, D., Altarescu, G., Beck, M. (eds) Fabry Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9033-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9033-1_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9032-4

  • Online ISBN: 978-90-481-9033-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics