Skip to main content

Potential Factors Influencing Treatment Outcomes

  • Chapter
  • First Online:
Fabry Disease
  • 1158 Accesses

Abstract

Treatment with enzyme replacement therapy in Fabry disease is successful in some, but not all patients. The presence of advanced disease, especially in the kidney or heart is associated with a less favorable outcome. Genetic and environmental factors that are known to play a role in the development of cardiovascular complications in the general population will probably put a patient with Fabry disease at a cumulative risk for disease progression. Apart from these patient related matters, the dose of enzyme as well as the formation of antibodies is discussed. Since antibodies interfere with surrogate markers such as levels of globotriaosylceramide in urine and endothelial cells in the skin, it is likely that they will affect clinical outcome. However, so far there is no evidence from clinical studies that this is the case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiffmann R, Kopp JB, Austin HA III et al (2001) Enzyme replacement therapy in fabry disease: a randomized controlled trial. J Am Med Assoc 285(21):2743–2749

    Article  CAS  Google Scholar 

  2. Eng CM, Guffon N, Wilcox WR et al (2001) Safety and efficacy of recombinant human ‡-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med 345(1):9–16

    Article  PubMed  CAS  Google Scholar 

  3. Wilcox WR, Banikazemi M, Guffon N et al (2004) Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet 75(1):65–74

    Article  PubMed  CAS  Google Scholar 

  4. Germain DP, Waldek S, Banikazemi M et al (2007) Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol 18(5):1547–1557

    Article  PubMed  CAS  Google Scholar 

  5. Schiffmann R, Ries M, Timmons M, Flaherty JT, Brady RO (2006) Long-term therapy with agalsidase-alfa for Fabry disease: safety and effects on renal function in a home infusion setting. Nephrol Dial Transplant 21(2):345–354

    Article  PubMed  CAS  Google Scholar 

  6. West M, Nicholls K, Mehta A et al (2009) Agalsidase-alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol 20(5):1132–1139

    Article  PubMed  CAS  Google Scholar 

  7. Altarescu G, Moore DF, Schiffmann R (2005) Effect of genetic modifiers on cerebral lesions in Fabry disease. Neurology 64:2148–2150

    Article  PubMed  CAS  Google Scholar 

  8. Ledvinova J, Poupetova H, Hanackova A, Pisacka M, Elleder M (1997) Blood group B glycosphingolipids in alpha-galactosidase deficiency (Fabry disease): influence of secretor status. Biochim Biophys Acta 1345(2):180–187

    Article  PubMed  CAS  Google Scholar 

  9. Linthorst GE, Folman CC, Aerts JM, Hollak CE (2003) Blood group does not correlate with disease severity in patients with Fabry disease (alpha-galactosidase A deficiency). Blood Cells Mol Dis 31(3):324–326

    Article  PubMed  CAS  Google Scholar 

  10. Deegan P, Marchesan D, Cox TM (2009) Studies on the serum phosphatase that abrogates uptake of mannose-6-phosphate-containing therapeutic lysosomal enzymes. Meeting of the European Study Group of lysosomal disease, Bad Honnef, 13 Sept 2009

    Google Scholar 

  11. Schiffmann R, Warnock DG, Banikazemi M et al (2009 Feb) Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant 24(7):2102–2111

    Article  PubMed  Google Scholar 

  12. Banikazemi M, Bultas J, Waldek S et al (2007) Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 146(2):77–86

    PubMed  Google Scholar 

  13. Breunig F, Weidemann F, Strotmann J, Knoll A, Wanner C (2006) Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Intern 69:1216–1221

    Article  CAS  Google Scholar 

  14. West M, Nicholls K, Mehta A et al (2009) Agalsidase-alfa and kidney dysfunction in Fabry disease. Am Soc Nephrol 20(5):1132–1139

    Article  CAS  Google Scholar 

  15. Kunz R, Friedrich C, Wolbers M, Mann JF (2008) Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Int Med 148(1):30–48

    PubMed  Google Scholar 

  16. Beck M, Ricci R, Widmer U et al (2004) Fabry disease: overall effects of agalsidase-alfa treatment. Europ J Clin Invest 34(12):838–844

    Article  PubMed  CAS  Google Scholar 

  17. Koskenvuo JW, Hartiala JJ, Nuutila P et al (2008) Twenty-four-month alpha-galactosidase A replacement therapy in Fabry disease has only minimal effects on symptoms and cardiovascular parameters. J Inherit Metab Dis 31(3):432–441

    Article  PubMed  CAS  Google Scholar 

  18. Moon JC, Sachdev B, Elkington AG et al (2003) Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 24(23):2151–2155

    Article  PubMed  Google Scholar 

  19. Weidemann F, Niemann M, Breunig F et al (2009) Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 119(4):524–529

    Article  PubMed  CAS  Google Scholar 

  20. Weidemann F, Niemann M, Herrmann S et al (2007) A new echocardiographic approach for the detection of non-ischaemic fibrosis in hypertrophic myocardium. EurHeart J 28(24):3020–3026

    Google Scholar 

  21. Crutchfield KE, Patronas NJ, Dambrosia JM et al (1998) Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 50(6):1746–1749

    Article  PubMed  CAS  Google Scholar 

  22. Fellgiebel A, Muller MJ, Mazanek M, Baron K, Beck M, Stoeter P (2005) White matter lesion severity in male and female patients with Fabry disease. Neurology 65(4):600–602

    Article  PubMed  CAS  Google Scholar 

  23. Jardim LB, Aesse F, Vedolin LM et al (2006) White matter lesions in Fabry disease before and after enzyme replacement therapy: a 2-year follow-up. Arq Neuropsiquiatr 64(3B):711–717

    Article  PubMed  Google Scholar 

  24. Vedder AC, Linthorst GE, Houge G et al (2007) Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoSONE 2(7):e598

    Google Scholar 

  25. Albrecht J, Dellani PR, Muller MJ et al (2007) Voxel based analyses of diffusion tensor imaging in Fabry disease. J Neurol Neurosurg Psych 78(9):964–969

    Article  CAS  Google Scholar 

  26. Schiffmann R, Askari H, Timmons M et al (2007) Weekly enzyme replacement therapy may slow decline of renal function in patients with Fabry disease who are on long-term biweekly dosing. J Am Soc Nephrol 18(5):1576–1583

    Article  PubMed  CAS  Google Scholar 

  27. Torra R, Algaba F, Ars E, Santin S, Fernandez-Llama P, Ballarin J (2008) Preservation of renal function in a patient with Fabry nephropathy on enzyme replacement therapy. Clin Nephrol 69(6):445–449

    PubMed  CAS  Google Scholar 

  28. Clarke JT, West ML, Bultas J, Schiffmann R (2007) The pharmacology of multiple regimens of agalsidase alfa enzyme replacement therapy for Fabry disease. GenetMed 9(8):504–509

    CAS  Google Scholar 

  29. Schiffmann R, Murray GJ, Treco D et al (2000) Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc Nat Acad Sci (USA) 97(1):365–370

    Article  CAS  Google Scholar 

  30. Eng CM, Banikazemi M, Gordon RE et al (2001) A Phase 1/2 Clinical Trial of Enzyme Replacement in Fabry Disease: pharmacokinetic, Substrate Clearance, and Safety Studies. Amer J Hum Genet 68(3):711–722

    Article  PubMed  CAS  Google Scholar 

  31. Sheppard MN, Cane P, Florio R et al (2009) A detailed pathologic examination of heart tissue from three older patients with Anderson-Fabry disease on enzyme replacement therapy. Cardiovasc Pathol (epub 23/jul/09)

    Google Scholar 

  32. Lubanda JC, Anijalg E, Bzduch V, Thurberg BL, Benichou B, Tylki-Szymanska A (2009) Evaluation of a low dose, after a standard therapeutic dose, of agalsidase beta during enzyme replacement therapy in patients with Fabry disease. Genet Med 11(4):256–264

    Article  PubMed  CAS  Google Scholar 

  33. Vedder AC, Breunig F, Donker-Koopman WE et al (2008) Treatment of Fabry disease with different dosing regimens of agalsidase: effects on antibody formation and GL-3. Mol Genet Metab 94(3):319–325

    Article  PubMed  CAS  Google Scholar 

  34. Linthorst GE, Hollak CEM, Donker-Koopman WE, Strijland A, Aerts JMFG (2004) Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase alpha and beta. Kidney Int 66(4):1589–1595

    Article  PubMed  CAS  Google Scholar 

  35. Whitfield PD, Calvin J, Hogg S et al (2005) Monitoring enzyme replacement therapy in Fabry disease–role of urine globotriaosylceramide. J Inherit Metab Dis 28(1):21–33

    Article  PubMed  CAS  Google Scholar 

  36. Ohashi T, Sakuma M, Kitagawa T, Suzuki K, Ishige N, Eto Y (2007) Influence of antibody formation on reduction of globotriaosylceramide (GL-3) in urine from Fabry patients during agalsidase beta therapy. Mol Genet Metab 92(3):271–273

    Article  PubMed  CAS  Google Scholar 

  37. Vedder AC, Linthorst GE, van Breemen MJ et al (2007) The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis 30(1):68–78

    Article  PubMed  CAS  Google Scholar 

  38. Ohashi T, Iizuka S, Ida H, Eto Y (2008) Reduced alpha-Gal A enzyme activity in Fabry fibroblast cells and Fabry mice tissues induced by serum from antibody positive patients with Fabry disease. Mol Genet Metab 94(3):313–318

    Article  PubMed  CAS  Google Scholar 

  39. Benichou B, Goyal S, Sung C, Norfleet AM, O’Brien F (2009) A retrospective analysis of the potential impact of IgG antibodies to agalsidase beta on efficacy during enzyme replacement therapy for Fabry disease. Mol Genet Metab 96(1):4–12

    Article  PubMed  CAS  Google Scholar 

  40. Mendelsohn NJ, Messinger YH, Rosenberg AS, Kishnani PS (2009) Elimination of antibodies to recombinant enzyme in Pompe’s disease. N Engl J Med 360(2):194–195

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.E. Linthorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Linthorst, G., Hollak, C. (2010). Potential Factors Influencing Treatment Outcomes. In: Elstein, D., Altarescu, G., Beck, M. (eds) Fabry Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9033-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9033-1_30

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9032-4

  • Online ISBN: 978-90-481-9033-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics