Skip to main content

Impact of Climate Change on Diseases of Cool Season Grain Legume Crops

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

An increase in incidence of legume disease in response to climate change is likely but not assured. Many factors can affect any disease and reductions in incidence may be possible. Evidence from human diseases suggests that increases in diseases are occurring and in some cases this is reflected in increases in plant pathogens. However, models show that a variety of outcomes in plant disease incidence may occur and suggest that levels of disease will depend on interactions between plant and pathogen as well as with the environment. Climate change alters factors which may affect plant diseases indirectly. These include humidity, plant growth rate and soil microbiology as well as specific virulence and resistance factors. Legume diseases are unlikely to act differently and newly emerged diseases such as Anthracnose may already be accelerated by climate change. No general predictions of plant diseases are possible and will be increasingly necessary to monitor local conditions with rapid analysis techniques to manage disease and reduce losses. Molecular biology and other advanced methods have the speed and precision to assist in this monitoring and hold strong potential for future management. Data bases of information and rapid communication will be equally essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • M. Afifi and S.A. Zayan (2008). Validation of sweet pepper powdery mildew forecasting model in Egypt. Asp Appl Biol 88, 75–81.

    Google Scholar 

  • D.J. Bailey and C.A. Gilligan (2004). Modelling and analysis of disease-induced host growth in the epidemiology of take-all. Phytopathology 94, 535–540.

    Article  CAS  PubMed  Google Scholar 

  • E.J. Barron (1995). Climate models: How reliable are their predictions? Consequences 1, 17–27.

    Google Scholar 

  • F.A. Bazzaz (1996). Plants in changing environments. Cambridge University Press, Cambridge, p. 276.

    Google Scholar 

  • M. Bouma and H. van der Kaay (1996). The El Niño southern oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: An early warning system for future epidemics? Trop Med Int Health 1, 86–96.

    Article  CAS  PubMed  Google Scholar 

  • C.M. Brasier and J.K. Scott (1994). European oak declines and global warming: A theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bull 24, 221–232.

    Article  Google Scholar 

  • T.W. Bretag, P.J. Keane, and T.V. Price (2006). The epidemiology and control of ascochyta blight in field peas. Aust J Agric Res 57, 883–902.

    Article  Google Scholar 

  • L. Buchwaldt, K.L. Anderson, R.A.A. Morrall, B.D. Gossen, and C.C. Bernier (2004). Identification of lentil germplasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 94, 236–243.

    Article  CAS  PubMed  Google Scholar 

  • S. Chakraborty, R. Ghosh, M. Ghosh, C.D. Fernandes, M.J. Charchar, and S. Kelemum (2004). Weather based prediction of anthracnose severity using neural networks. Plant Pathol 53, 375–386.

    Article  Google Scholar 

  • S. Chakraborty, J. Luck, G. Hollaway, A. Freeman, R. Norton, K.A. Garrett, K. Percy, A. Hopkins, C. Davis, and D.F. Karnosky (2008). Impacts of global change on diseases of agricultural crops and forest trees. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 3(054), 1–15.

    Google Scholar 

  • S. Chakraborty, G.M. Murray, P.A. Magarey, T. Yonow, R. O’Brien, B.J. Croft, M.J. Barbetti, K. Sivasithamparam, K.M. Old, M.J. Dudzinski, R.W. Sutherst, L.J. Penrose, C. Archer, and R.W. Emmett (1998). Potential impact of climate change on plant disease of economic significance to Australia. Australas Plant Pathol 27, 15–35.

    Article  Google Scholar 

  • S. Chakraborty, A.V. Tiedemann, and P.S. Teng (2000). Climate change: Potential impact on plant disease. Environ Pollut 108, 317–326.

    Article  CAS  PubMed  Google Scholar 

  • W. Checkley, L.D. Epstein, R.H. Gilman, D. Figueroa, and R.I. Cama (2000). Effect of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 355, 442–450.

    CAS  PubMed  Google Scholar 

  • C.C. Chen and B.A. McCarl (2001). An Investigation of the relationship between pesticide usage and climate change. Climate Change 50, 475–487.

    Article  Google Scholar 

  • M.H. Chen and E.B. Nelson (2008). Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species. Phytopathology 98, 1012–1018.

    Article  PubMed  Google Scholar 

  • G. Chongo, B.D. Gossen, L. Buchwaldt, T. Adhikari, and S.R. Rimmer (2004). Genetic diversity of Ascochyta rabiei in Canada. Plant Dis 88, 4–10.

    Article  Google Scholar 

  • B.C. Clifford, A. Davies, and G. Griffith (1996). UK climate change models to predict crop disease and pests threats. Asp Appl Biol 45, 269–276.

    Google Scholar 

  • S.M. Coakley and H. Scherm (1996). Plant disease in a changing global environment. Asp Appl Biol 45, 227–237.

    Google Scholar 

  • S.M. Coakley, H. Scherm, and S. Chakraborty (1999). Climate change and disease management. Annu Rev Phytopathol 37, 399–426.

    Article  CAS  PubMed  Google Scholar 

  • C.M. Craft and E.B. Nelson (1996). Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminicola. Appl Environ Microbiol 62, 1550–1557.

    CAS  PubMed  Google Scholar 

  • C.H. Dickinson and J.J. Sheridan (1968). Studies on the survival of Mycosphaerella pinodes and Ascochyta pisi. Ann Appl Biol 62, 473–483.

    Article  Google Scholar 

  • Y. Elad (2009). A model for the assessment of the effect of climate change on plant-pathogen-microorganism interactions. In Climate Change: Global Risks, Challenges and Decisions. IOP Conf Ser Earth Environ Sci 6, 472009.

    Article  Google Scholar 

  • P.R. Epstein (2002). Climate change and infectious disease: Stormy weather ahead? Epidemiology 13, 373–375.

    Article  PubMed  Google Scholar 

  • N. Evans, A. Baierl, M.A. Semenov, P. Gladders, and B.D. Fitt (2008). Range and severity of a plant disease increased by global warming. J R Soc Interface 5(22), 525–531.

    Article  PubMed  Google Scholar 

  • R. Ford, S. Banniza, W. Photita, and P.W.J. Taylor (2004). Morphological and molecular discrimination of Colletotrichum truncatum causing anthracnose on lentil in Canada. Australas Plant Pathol 33, 559–569.

    Article  CAS  Google Scholar 

  • O. Frenkel, A. Sherman, S. Abbo, and D. Shtienberg (2008). Different ecological affinities and aggressiveness patterns among Didymella rabiei isolates from sympatric domesticated chickpea and wild Cicer judaicum. Phytopathology 98, 600–608.

    Article  CAS  PubMed  Google Scholar 

  • P. Garbeva, J.A. van Veen, and J.D. van Elsas (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phytopathol 42, 243–270.

    Article  CAS  Google Scholar 

  • K.A. Garrett, S.P. Dendy, E.E. Frank, M.N. Rouse, and S.E. Travers (2006). Climate change effects on plant disease: Genomes to ecosystems. Ann Rev Phytopathol 44, 489–509.

    Article  CAS  Google Scholar 

  • R. Ghini, E. Hanada, and W. Bettiol (2008). Climate change and plant dissease. Sci Agricol (Piracicaba Braz) 65(Special Issue), 98–107.

    Google Scholar 

  • A.K. Goel, D. Lundberg, M.A. Torres, R. Matthews, C. Akimoto-Tomiyama, L. Farmer, J.L. Dangl, and S.R. Grant (2008). The Pseudomonas syringae type III effector HopAM1 enhances virulence in water stressed plants. Mol Plant Microbe Interact 21, 360–371.

    Article  Google Scholar 

  • J. Goudriaan and J.C. Zadoks (1995). Global climate change: Modelling the potential responses of agro-ecosystems with special reference to crop protection. Environ Pollut 87, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • J.M. Hibberd, R. Whitbread, and J.F. Farrar (1996). Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis. Physiol Mol Plant Pathol 48, 37–53.

    Article  CAS  Google Scholar 

  • W.J. Kaiser (1973). Factors affecting growth, sporulation, pathogenicity, and survival of Ascochyta rabiei. Mycologia 65, 444–457.

    Article  CAS  PubMed  Google Scholar 

  • W.J. Kaiser, M. Mihov, F.J. Muehlbauer, and R.M. Hannan (1994). First report of anthracnose of lentil incited by Colletotrichum truncatum in Bulgaria. Plant Dis 82, 128.

    Article  Google Scholar 

  • K. Lba (2002). Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Ann Rev Plant Biol 53, 225–245.

    Article  Google Scholar 

  • J.M. Lenné and R.M. Sonoda (1982). Effect of anthracnose on yield of the tropical forage legume, Stylosanthes hamata. Phytopathology 72, 207–209.

    Article  Google Scholar 

  • J. Lichtenzveig, D. Shtienberg, H.B. Zhang, D.J. Bonfil, and S. Abbo (2002a). Biometric analyses of the inheritance of resistance to Didymella rabiei in chickpea. Phytopathology 92, 417–423.

    Article  CAS  PubMed  Google Scholar 

  • J. Lichtenzveig, P. Winter, S. Abbo, D. Shtienberg, W.J. Kaiser, and G. Kahl (2002b). Towards the first linkage map of Didymella rabiei genome. Phytoparasitica 30, 467–472.

    Article  CAS  Google Scholar 

  • E. Lindgren (1998). Climate change, tick-borne encephalitis and vaccination needs in Sweden – A prediction model. Ecol Model 110, 55–63.

    Article  Google Scholar 

  • E. Lindgren, L. Tälleklint, and T. Polfeldt (2000). Impact of climatic change on the northern latitude limit and population. Environ Health Perspect 108, 119–123.

    Article  CAS  PubMed  Google Scholar 

  • B. Liu, L.A. Wasilwa, T.E. Morelock, N.R. O’Neill, and J.C. Correll (2007). Comparison of Colletotrichum orbiculare and several allied Celletotrichum spp. For mtDNA RFLP’s, intron RFLP and sequence variation, vegetative compatibility and host specificity. Phytopathology 97, 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  • Y. Luo, D.O. TeBeest, P.S. Teng, and N.G. Fabellar (1995). Simulation studies on risk analysis of rice leaf blast epidemics associated with global climage change in several Asian countries. J Biogeogr 22, 673–678.

    Article  Google Scholar 

  • J. Lupton, S. Chakraborty, M. Dale, and R.W. Sutherst, 1995, Assessment of the enhanced greenhouse effect on plant diseases – A case study of Stylosanthes anthracnose. Proceedings of the Tenth Biennial Australasian Plant Pathology Society Conference, Lincoln University, NZ, p. 108.

    Google Scholar 

  • S. Marín, E. Companys, V. Sanchis, A.J. Ramos, and N. Magan (1998). Effect of water activity and temperature on competing abilities of common maize fungi. Mycol Res 102, 959–964.

    Article  Google Scholar 

  • A.J. McElrone, C.D. Reid, K.A. Hoye, E. Hart, and R.B. Jackson (2005). Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob Change Biol 11, 1828–1836.

    Article  Google Scholar 

  • U. Mina and P. Sinha (2008). Effects of climate change on plant pathogens. EnviroNews 14, 1–5.

    Google Scholar 

  • J.A. Navas-Cortés, B.B. Landa, M.A. Méndez-Rodríguez, and R.M. Jiménex-Díaz (2007). Quantitative modelling of the effects of temperature and inoculum density of Fusarium oxysporium f. sp, ciceris Races 0 and 5 on development of Fusarium wilt in chickpea cultivars. Phytopathology 97, 564–573.

    Article  PubMed  Google Scholar 

  • W.F. Osswald, F. Fleischmann, and I. Heiser (2006). Investigations on the effect of ozone, elevated CO2 and nitrogen fertilization on host-parasite interactions. Summa Phytopathol 32S, S111–S113.

    Google Scholar 

  • M. Pascual, J.A. Ahumada, L.F. Chaves, X. Rodó, and M. Bouma (2006). Malaria resurgence in the East African highlands: Temperature trends revisited. Proc Natl Acad Sci USA 103, 5829–5834.

    Article  CAS  PubMed  Google Scholar 

  • E.A. Pedersen and R.A.A. Morrall (1994). Effects of cultivar, leaf wetness duration, temperature and growth stage on infection and development of ascochyta blight on lentil. Phytopathology 84, 1024–1030.

    Article  Google Scholar 

  • T.L. Peever (2007). Role of host specificity in the speciation of ascochyta pathogens of cool season food legumes. Euro J Plant Pathol 119, 119–126.

    Article  Google Scholar 

  • M.L. Pilet-Nayel, F.J. Muehlbauer, R.J. McGee, J.M. Kraft, A. Baranger, and C.J. Coyne (2005). Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95, 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  • S. Pivonia and X.B. Yang (2004). Assessment of the potential year-round establishment of soybean rust throughout the world. Plant Dis 88, 523–529.

    Article  Google Scholar 

  • A. Porta-Puglia and M. Aragona (1997). Improvement of grain legumes general part: Diseases. Field Crops Res 53, 17–30.

    Article  Google Scholar 

  • R.A. Ramage and M.W. Sutherland (1995). High and low pre-inoculation temperatures decrease the effectiveness of the Lr20 and Sr15 rust resistance genes in wheat. Plant Pathol 44, 772–728.

    Article  Google Scholar 

  • M.L. Ramirez, S.N. Chulze, and N. Magan (2004). Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in Fusarium graminearum. Mycologia 96, 470–478.

    Article  CAS  Google Scholar 

  • V. Rezacova, H. Blum, H. Hrselova, H. Gamper, and M. Gryndler (2005). Saprobic microfungi under Lolium perenne and Trifolium repens at different fertilization intensities and elevated atmospheric CO2 concentration. Glob Change Biol 11, 224–230.

    Article  Google Scholar 

  • R. Roche, M.O. Bancal, N. Gagnaire, and L. Huber (2008). Potential impact of climate change on brown wheat rust: A preliminary study based on biophysical modelling of infection events and plant-pathogen interactions. Ann Appl Biol 88, 135–142.

    Google Scholar 

  • X. Rodó, M. Pascual, G. Fuchs, and A.S. Faruque (2002). ENSO and cholera: A nonstationary link related to climate change? Proc Natl Acad Sci USA 99, 12901–12906.

    Article  PubMed  Google Scholar 

  • C. Roger, B. Tivoli, and L. Huber (1999). Effects of temperature and moisture on disease and fruit body development of Mycosphaerella pinodes on pea (Pisum sativum). Plant Pathol 48, 1–9.

    Article  Google Scholar 

  • C. Rosenzweig and M.L. Parry (1994). Potential impact of climate change on world food supply. Nature 367, 133–138.

    Article  Google Scholar 

  • H. Scherm and X.B. Yang (1995). Interannual variations in wheat rust development in China and the United States in relation to the El NinÄ o/Southern Oscillation. Phytopathology 85, 970–976.

    Article  Google Scholar 

  • Sweeney, (1978). The effects of temperature on the mosquito pathogenic fungus Culicinomyces. Aust J Zool 26, 47–53.

    Article  Google Scholar 

  • P. Talhinhas, S. Sreenivasaprasad, J. Neves-Martins, and H. Oliveira (2002). Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology 92, 986–996.

    Article  PubMed  Google Scholar 

  • P.W.J. Taylor and R. Ford (2007). Diagnostics, genetic diversity and pathogenic variation of ascochyta blight of cool season food and feed legumes. Euro J Plant Pathol 119, 127–133.

    Article  Google Scholar 

  • D.E. Te Beest, N.D. Paveley, M.W. Shaw, and F. van den Bosch (2008). Disease-weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology 98, 609–617.

    Article  CAS  PubMed  Google Scholar 

  • A. Trapero-Casas and W.J. Kaiser (1992). Influence of temperature, wetness period, plant age, and inoculum concentration on infection and development of ascochyta blight of chickpea. Phytopathology 82, 589–596.

    Article  Google Scholar 

  • A. Trapero-Casas and W.J. Kaiser (2007). Differences between ascospores and conidia of Didymella rabiei in spore germination and infection of chickpea. Phytopathology 97, 1600–1607.

    Article  PubMed  Google Scholar 

  • Y. Wang, J. Handoko, and G. Rimmington (1992). Sensitivity of wheat growth to increased air temperature for different scenarios of ambient CO2 concentration and rainfall in Victoria, Australia – A simulation study. Climate Res 2, 131–149.

    Article  Google Scholar 

  • WCS 2008, The Deadly Dozen: Wildlife Diseases in the Age of Climate Change. http://www.wcs.org/media/file/DEADLYdozen_screen.pdf

  • D.H. Webb and F.W. Nutter (1997). Effects of leaf wetness duration and temperature on infection efficiency, latent period and rate of pustule appearance of rust in alfalfa. Phytopathology 87, 946–950.

    Article  CAS  PubMed  Google Scholar 

  • WHO (2003), WHO Climate Change and Human Health – Risks and Responses. WHO, Geneva ISBN 92 4 159081 5

    Google Scholar 

  • F. Workneh and X.B. Yang (2000). Prevalence of Sclerotinia stem rot of soybeans in the north-central United States in relation to tillage, climate and latitudinal positions. Phytopathology 90, 1375–1382.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to express thanks to Amaal Abbas Muhammed for initial literature analysis and Mitchell Andrews for constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thomas, K. (2010). Impact of Climate Change on Diseases of Cool Season Grain Legume Crops. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_6

Download citation

Publish with us

Policies and ethics