Skip to main content

Efficient Biological Nitrogen Fixation Under Warming Climates

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

Nitrogen fixation (NF) in legumes results from their symbiotic interaction with soil bacteria called rhizobia to form nitrogen fixing root nodules.The reduction of atmospheric nitrogen (N2) to ammonium by rhizobia is an important activity making N available for agricultural soils. Drought is one of the most common stress factors affecting legume yields worldwide. Given the climatic trends viz a viz global warming and subsequent desertification, drought stress is likely to remain a serious problem in major agricultural zones of the world. This chapter reviews the role of the symbiotic interaction between legume and rhizobium for increased seed yield under drought conditions with special attention being given to chickpea, lentil, field pea, faba beans and lathyrus, the major cool season grain legume crops. Physiological, ecological, molecular and genetic aspects of NF in response to drought stress are discussed together with inoculation and agronomic practices in order to increase yields in dry land conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Abdel-Wahab, A.M.A. Abdel-Muhsin, E. Ali et al. (2002). Dynamics of gametocytes among Plasmodium falciparum clones in natural infections in an area of highly seasonal transmission. J Infect Dis 185, 1838–1842.

    Article  PubMed  Google Scholar 

  • J. Aguirreolea and M. Sanchez-Diaz (1989). CO2 evolution by nodulated roots in Medicago sativa L. under water stress. J Plant Physiol 134, 598–602.

    CAS  Google Scholar 

  • A. Aharoni, S. Dixit, R. Jetter et al. (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when over expressed in Arabidopsis. Plant Cell 16, 2463–2480.

    Article  CAS  PubMed  Google Scholar 

  • J.P.F. Almeida, U.A. Hartwig, M. Frehner et al. (2000). Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L). J Exp Bot 51, 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  • B. Anyango, K.J. Wilson, J.L. Beynon et al. (1995). Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Appl Environ Microbiol 61, 4016–4021.

    CAS  PubMed  Google Scholar 

  • C. Arrese-Igor, E.M. González, A.J. Gordon et al. (1999). Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Symbiosis 27, 189–212.

    CAS  Google Scholar 

  • M. Ashraf and I. Afia (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200(6), 535–546.

    Google Scholar 

  • M. Athar (1998). Drought tolerance by lentil rhizobia (Rhizobium leguminosarum) from arid and semiarids areas of Pakistan. Lett Appl Microbiol 26, 38–42.

    Article  Google Scholar 

  • M. Athar and D.A. Johnson (1997). Effect of drought on the growth and survival of Rhizobium meliloti strains from Pakistan and Nepal. J Arid Environ 35, 335–340.

    Article  Google Scholar 

  • C.A. Atkins, M. Fernando, S. Hunt et al. (1992). A metabolic connection between nitrogenase activity and the synthesis of ureides in nodulated soybean. Physiol Plant 84, 441–447.

    Article  CAS  Google Scholar 

  • G. Avigad (1982). Sucrose and other dissacarides. In: Loewus, F.A. and Tanner, W. (eds.), Encyclopedia of plant physiology (New Series), Vol. 13A. Springer-Verlag, Berlin.

    Google Scholar 

  • M. Bacanamwo and J.E. Harper (1997). The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagine and/or products of its metabolism. Physiol Plant 100, 371–377.

    Article  CAS  Google Scholar 

  • P. Bhatnagar-Mathur, D.M. Jyostna, R.D. Srinivas et al. (2007). Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26, 2071–2082.

    Article  CAS  PubMed  Google Scholar 

  • N. Boonkerd and R.W. Weaver (1982). Survival of cowpea rhizobia in soil as affected by soil temperature and moisture. Appl Environ Microbiol 43, 585–589.

    CAS  PubMed  Google Scholar 

  • E.A. Bray (1993). Molecular responses to water deficit. Plant Physiol 103, 1035–1040.

    CAS  PubMed  Google Scholar 

  • J. Brockwell, R.R. Gult, D.L. Chase et al. (1980). An appraisal of practical alternatives to legume seed inoculation: Field experiments on seed bed inoculation with solid and liquid inoculants. Aust J Agri Res 31, 47–60.

    Article  Google Scholar 

  • M.D. Busse and P.J. Bottomley (1989). Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and non-permeating solutes. Appl Environ Microbiol 55, 2431–2436.

    CAS  PubMed  Google Scholar 

  • P.M. Cabrerizo, C. Arrese-Igor, and P.M. Aparicio-Tejo (2000). Effect of elevated CO2 on growth and gas exchange of symbiotic and nitrate-dependent pea plants. In: Martins-Louçao, M.A. and Lips, S.H. (eds.), Nitrogen in a sustainable ecosystem: From the cell to the plant. Backhuys Publishers, Leiden.

    Google Scholar 

  • P.M. Cabrerizo, E.M. González, P.M. Aparicio-Tejo et al. (2001). Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiol Plant 113, 33–40.

    Article  CAS  Google Scholar 

  • C. Carranca, A. de Vrennes, D. Roiston et al. (1999). Biological nitrogen fixation by fababean, pea and chickpea, under field conditions, estimated by the 15N isotope dilution technique. Eur J Agron 10, 49–56.

    Article  CAS  Google Scholar 

  • P.M. Chandler and M. Robertson (1994). Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45, 113–141.

    Article  CAS  Google Scholar 

  • C.T. Chien, J. Maundu, J. Cavaness et al. (1992). Characterization of salt-tolerant and salt-sensitive mutants of Rhizobium leguminosarum biovar viciae strain C12046. FEMS Microbiol Lett 90, 135–140.

    CAS  Google Scholar 

  • J.E. Cooper, M. Wood, A.J. Bjourson et al. (1985). Nodulation of Lotus pedunculatus in acid rooting solution by fast-and slow-growing rhizobia. Soil Biol Biochem 17, 487–492.

    Article  Google Scholar 

  • J.L. Cooper, B.J. Till, R.G. Laport et al. (2008). TILLING to detect induced mutations in soybean BMC. Plant Biol 8, 9.

    Google Scholar 

  • M.P. Cordovilla, A. Ocaña, F. Ligero et al. (1995a). Salinity effects on growth analysis and nutrient composition in 4 grain legumes-Rhizobium symbiosis. J Plant Nutr 18, 1595–1609.

    Article  CAS  Google Scholar 

  • M.P. Cordovilla, F. Ligero, C. Lluch et al. (1995b). Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in Faba bean (Vicia faba L.) under salt stress. Plant Soil 172, 289–297.

    Article  CAS  Google Scholar 

  • J. Craig, P. Barratt, H. Tatge, A. Déjardin et al. (1999). Mutations at the rug4 locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase. Plant J 17, 353–362.

    Article  CAS  Google Scholar 

  • J.L. Cubero, A. Pieterse, A.R. Saghir et al. (1988). Parasitic weeds on cool-season food. In: Summerfield, R.J. (ed.), World crops: Cool season food legumes, pp. 549–563. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • P.M.G. Curioni, U.A. Hartwig, J. Nosberger, K.A. Schuller et al. (1999). Glycolytic flux is adjusted to nitrogenase activity in nodules of detopped and argon-treated alfalfa plants. Plant Physiol 119, 445–453.

    Article  CAS  PubMed  Google Scholar 

  • M. Dalmais, J. Schmidt, C. Le Signor, F. Moussy et al. (2008). UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9, R43.

    Article  PubMed  CAS  Google Scholar 

  • S.K.A. Danso and M. Alexander (1974). Survival of two strains of Rhizobium. Soil Sci Soc Am Proc 38, 86–89.

    Article  Google Scholar 

  • S.K.A. Danso, F. Zapata, G. Hardson et al. (1987). Nitrogen fixation in fababean as affected by plant population density in sole or intercropped systems and barley. Soil Biol Biochem 19, 411–415.

    Article  Google Scholar 

  • W.J. Davies and H.G. Jones (1991). Abscisic acid: Physiology and biochemistry. BIOS Scientific, Oxford.

    Google Scholar 

  • J.R. Dean and K.W. Clark (1977). Nodulation, acetylene reduction and yield of fababean as affected by inoculum concentration and soil nitrate level. Can J Plant Sci 57, 1055–1061.

    Article  CAS  Google Scholar 

  • L. de Lorenzo, F. Merchan, S. Blanchet et al. (2007). Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiol 145, 1521–1532.

    Article  PubMed  CAS  Google Scholar 

  • M.F. Del Papa, L.J. Balague, S.C. Sowinski et al. (1999). Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central Argentina and Uruguay. Appl Environ Microbiol 65, 1420–1427.

    CAS  PubMed  Google Scholar 

  • R.F. Denison (1998). Decreased oxygen permeability: A universal stress response in legume root nodules. Bot Acta 111, 191–192.

    CAS  Google Scholar 

  • G.M. Dill, C.A. Jacob, S.R. Padgette et al. (2008). Glyphosate-resistant crops: Adoption, use and future considerations. Pest Manag Sci 64, 326–331.

    Article  CAS  PubMed  Google Scholar 

  • L. Diaz del Castillo, S. Hunt, D.B. Layzell et al. (1994). The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules. Plant Physiol 106, 949–955.

    CAS  Google Scholar 

  • J.J. Doyle, J.L. Doyle, J.A. Ballenger et al. (1996). The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family leguminoseae. Mol Phylogen Evol 5, 429–438.

    Article  CAS  Google Scholar 

  • J.J. Drevon, C. Abdelly, N. Amarger, E.A. Aouani, J. Aurag, H. Gherbi, M. Jebara, C. Lluch, H. Payre, O. Schump, M. Soussi, B. Sifi, M. Trabelsi et al. (2001). An interdisciplinary research strategy to improve symbiotic nitrogen fixation and yield of common bean (Phaseolus vulgaris) in salinised areas of the Mediterranean basin. J Biotechnol 91(2–3), 257–268.

    Article  CAS  PubMed  Google Scholar 

  • A. Eaglesham, B. Seaman, H. Ahmad et al. (1981). High-temperature tolerant “cowpea” rhizobia. In: Gibson, A.H. and Newton, W.E. (eds.), Current perspectives in nitrogen fixation. Elsevier/North-Holland Biomedical Press, Canberra-Amsterdam.

    Google Scholar 

  • E. Elkoca, F. Kantar, and H. Zengin (2005). Weed control in lentil (Lens culinaris) in eastern Turkey. N Z J Crop Hort Sci 33, 223–231.

    CAS  Google Scholar 

  • M. Engine and J.I. Sprent (1973). Effect of water stress on growth and nitrogen fixing activity of Trifolium repens. New Physiol 72, 117–126.

    Article  Google Scholar 

  • J. Evans, B. Dear, G.E. O’Connor et al. (1990). Influence of an acid soil on the herbage yield and nodulation of five annual pasture legumes. Aus J Exp Agri 30, 55–60.

    Article  CAS  Google Scholar 

  • C.W. Ford (1984). Accumulation of low molecular solutes in water stressed tropical legumes. Phytochemistry 23, 1007–1015.

    Article  CAS  Google Scholar 

  • E.B. Fred, I.L. Baldwin, E. McCoy et al. (1932). Root nodule bacteria and leguminous plants. Univ Wis Stud 5, 343.

    Google Scholar 

  • J. Fuhrmann, C.B. Davey, A.G. Wollum et al. (1986). Desiccation tolerance of clover rhizobia in sterile soils. Soil Sci Soc Am J 50, 639–644.

    Article  Google Scholar 

  • A.E. Gallacher and J.I. Sprent (1978). The effect of different water regimes on growth and nodule development of green house grown Vicia faba. J Exp Bot 29, 413–423.

    Article  Google Scholar 

  • L. Gálvez, E.M. González, C. Arrese-Igor et al. (2005). Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56, 2551–2561.

    Article  PubMed  CAS  Google Scholar 

  • A.K. Garg, J.K. Kim, T.G. Owens et al. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Nat Acad Sci USA 99, 15898–15903.

    Article  CAS  PubMed  Google Scholar 

  • A.C. Gaur (1979). Organic recycling- prospects in Indian agriculture. Fertilizer News 24, 49.

    CAS  Google Scholar 

  • C. Gazey, L.K. Abbott, A.D. Robson et al. (2004). Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from south-western Australia. Mycorrhiza 14, 355–362.

    Article  CAS  PubMed  Google Scholar 

  • T. George, J.K. Ladha, R.J. Buresh et al. (1992). Managing native legume fixed nitrogen in low land rice-based cropping systems. In: Ladha, J.K., George, T., and Bohlool, B.B. (eds.), Biological nitrogen fixation for sustainable agriculture. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • N.E. Ghittoni and M.A. Bueno (1996). Changes in the cellular content of trehalose in four peanut rhizobia strains cultured under hypersalinity. Symbiosis 20, 117–127.

    CAS  Google Scholar 

  • Y. Gogorcena, A.J. Gordon, P.R. Escuredo et al. (1997). N2 fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol 113, 1193–1201.

    CAS  PubMed  Google Scholar 

  • Y. Gogorcena, I. Iturbe-Ormaetxe, P.R. Escuredo et al. (1995). Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiol 108, 753–759.

    CAS  PubMed  Google Scholar 

  • E.M. Gonzalez, A.J. Gordon, C.L. James et al. (1995). The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 46, 1515–1523.

    Article  CAS  Google Scholar 

  • E.M. González, P.M. Aparicio-Tejo, A.J. Gordon et al. (1998). Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J Exp Bot 49, 1705–1714.

    Article  Google Scholar 

  • E.M. González, L. Gálvez, M. Royuela et al. (2001). Insights into the regulation of nitrogen fixation in pea nodules: Lessons from drought, abscisic acid and increased photoassimilate availability. Agronomie 21, 607–613.

    Article  Google Scholar 

  • A.J. Gordon, F.R. Minchin, C.L. James et al. (1999). Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120, 867–877.

    Article  CAS  PubMed  Google Scholar 

  • P.H. Graham, K. Draeger, M.L. Ferrey et al. (1994). Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40, 198–207.

    Article  CAS  Google Scholar 

  • Grain Legumes Integrated Project (GLIP) (2004–2008) FOOD-CT-2004-506223 FP6 Framework Programme. http://www.eugrainlegumes.org/

  • G.W. Griffith and R.J. Roughley (1992). The effect of moisture potential on growth and survival of root nodule bacteria in peat culture and on seed. J Appl Bacteriol 73, 7–13.

    Google Scholar 

  • G. Gualtieri, O. Kulikova, E. Limpens et al. (2002). Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant Mol Biol 50, 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Y. Hamdi (1970). Soil water tension and the movement of rhizobia. Soil Biol Biochem 3, 121–126.

    Article  Google Scholar 

  • U.A. Hartwig (1998). The regulation of symbiotic N2 fixation: A conceptual model of N feedback from the ecosystem to the gene expression level. Persp Plant Ecol Evol Syst 1, 92–120.

    Article  Google Scholar 

  • J.S. Hawker (1985). Sucrose. In: Dey, P.M. and Dixon, R.A. (eds.), Biochemistry of storage carbohydrates in green plants. Academic Press, London.

    Google Scholar 

  • S. Hill (1988). How is nitrogenase regulated by oxygen? FEMS Microbiol Rev 4, 111–129.

    CAS  PubMed  Google Scholar 

  • M. Hungria and A.A. Franco (1993). Effects of high temperature on nodulation and nitrogen fixation by Phaseolus vulgaris L. Plant Soil 149, 95–102.

    Article  CAS  Google Scholar 

  • M. Hungaria and M.A.T. Vargas (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65, 151–164.

    Article  Google Scholar 

  • S. Hunt and D.B. Layzell (1993). Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44, 483–511.

    Article  CAS  Google Scholar 

  • P.G. Hunt, A.G. Wollum, and T.A. Matheny (1981). Effects of soil water on Rhizobium japonicum infection nitrogen accumulation and yield in Bragg Soybeans. Agron J 73, 501–505.

    Article  Google Scholar 

  • A.M. Ibekwe, J.S. Angle, R.L. Chaney et al. (1997). Enumeration and nitrogen fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agric Ecosys Environ 61, 103–111.

    Article  CAS  Google Scholar 

  • S. Issa and M. Wood (1995). Multiplication and survival of chickpea and bean rhizobia in dry soils: The influence of strains, matric potential and soil texture. Soil Biol Biochem 27, 785–792.

    Article  CAS  Google Scholar 

  • S. Issa, M. Wood, L.P. Simmonds et al. (1993). Active movement of chickpea and bean rhizobia in dry soil. Soil Biol Biochem 25, 951–958.

    Article  Google Scholar 

  • F. Kantar, E. Elkoca, H. Ogutcu et al. (2003). Chickpea yields in relation to Rhizobium inoculation from wild chickpea at high altitudes. J Agron Crop Sci 189, 291–297.

    Article  Google Scholar 

  • H. Kaur, A.K. Gupta, N. Kaur et al. (2009). Differential response of the antioxidant system in wild and cultivated genotypes of chickpea. Plant Growth Regul, doi:10.1007/s10725-008-9332–1.

    Google Scholar 

  • P.K. Keshry, S.B. Gupta, K. Tedia et al. (2004). Selection of effective Rhizobium isolates of Lathyrus (Lathyrus sativus L.) for Chhattisgarh plains region. Adv Plant Sci 17, 75–79.

    Google Scholar 

  • G. Kahl, C. Molina, S.M. Udupa et al. (2007). Super SAGE: Exploring the stress transcriptome in ckickpea. In: Lazo, G., Grant, D., and Blake, V. (eds.), Plant and animal genome XV conference. Town & Country Convention Center, San Diego, CA.

    Google Scholar 

  • C.A. King and L.C. Purcell (2005). Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137, 1389–1396.

    Article  CAS  PubMed  Google Scholar 

  • P. Kumar, J.P. Agarwal, and P. Chandra (1993). Effect of inoculation, nitrogen and phosphorus on growth and yield of lentil. Lens News Lett 20, 57–59.

    Google Scholar 

  • A.K. Kush and K.R. Dadarwal (1980). Root exudates as pre-invasive factors in the nodulation of chickpea varieties. Soil Biol Biochem 13, 51–55.

    Article  Google Scholar 

  • S. Kyei-Boahen, A.E. Slinkard, F.L. Walley et al. (2002). Evaluation of rhizobial inoculation methods for chickpea. Agron J 94, 851–859.

    Article  Google Scholar 

  • C.K. Labanauskas, P. Shouse, L.H. Stolzy et al. (1981). Protein and free amino acids in field-grown cowpea seeds as affected by water stress at various stages. Plant Soil 63, 355–368.

    Article  CAS  Google Scholar 

  • R. Ladrera, D. Marino, E. Larrainzar et al. (2007). Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145, 539–546.

    Article  CAS  PubMed  Google Scholar 

  • E. Larrainzar, S. Wienkoop, W. Weckwerth et al. (2007). Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol 144, 1495–1507.

    Article  CAS  PubMed  Google Scholar 

  • J.D. Lima and L. Sodek (2003). N-stress alters aspartate and asparagine levels of xylem sap in soybean. Plant Sci 165, 649–656.

    Article  CAS  Google Scholar 

  • N.Y. Lisova, C.E. Koval, Z. Lorkevich et al. (1997). Efficiency and competitiveness of rhizobial strains of broad beans under different soil-climatic conditions. Mikrobiologicnii Zhumai 59, 42–45.

    Google Scholar 

  • J. Liu, I. Maldonado-Mendoza, M. Lopez-Meyer et al. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50, 529–544.

    Article  CAS  PubMed  Google Scholar 

  • J. Lloret, B.B.H. Wulff, J.M. Rubio et al. (1998). Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl Environ Microbiol 64, 1024–1028.

    CAS  PubMed  Google Scholar 

  • S.P. Long, E.A. Ainsworth, A. Rogers et al. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Annu Rev Plant Biol 55, 591–628.

    Article  CAS  PubMed  Google Scholar 

  • A. Lüscher, U.A. Hartwig, D. Suter et al. (2000). Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Glob Change Biol 6, 655–662.

    Article  Google Scholar 

  • N.L. Mantri, R. Ford, T.E. Coram et al. (2007). Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8, 303.

    Article  PubMed  CAS  Google Scholar 

  • D. Marino, E.M. González, and C. Arrese-Igor (2006). Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: Evidence for the occurrence of two regulation pathways under oxidative stresses. J Exp Bot 57, 665–673.

    Article  CAS  PubMed  Google Scholar 

  • D. Marino, E.M. González, P. Frendo et al. (2007a). NADPH recycling systems in oxidative stressed pea nodules: A key role for the NADP+-dependent isocitrate dehydrogenase. Planta 225, 413–421.

    Article  CAS  PubMed  Google Scholar 

  • D. Marino and P. Frendo Ladrera R et al. (2007b) Nitrogen fixation control under drought stress: Localized or systemic? Plant Physiol 146, 1968–1974.

    Article  CAS  Google Scholar 

  • D. Marino, N. Hohnjec, H. Küster et al. (2008). Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. Mol Plant Microbe Interact 21, 622–630.

    Article  CAS  PubMed  Google Scholar 

  • A. Marulanda, J.M. Barea, and R. Azcon (2006). An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microbial Ecol 52, 670–678.

    Article  CAS  Google Scholar 

  • M.A. Matamoros, L.M. Baird, P.R. Escuredo et al. (1999). Stress-induced legume root Nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol 121, 97–112.

    Article  CAS  PubMed  Google Scholar 

  • H. Matsumura, S. Reich, A. Ito et al. (2003). Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100, 1518–1523.

    Article  CAS  Google Scholar 

  • B.D. Mckersie, S.R. Bowley, E. Harjanto et al. (1996). Water deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase. Plant Physiol 111, 1177–1181.

    CAS  PubMed  Google Scholar 

  • F. Merchan, L. de Lorenzo, S.G. Rizzo et al. (2007). Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • J. Michiels, C. Verreth, and J. Vanderleyden (1994). Effects of temperature stress on bean nodulating Rhizobium strains. Appl Environ Microbiol 60, 1206–1212.

    CAS  PubMed  Google Scholar 

  • M.S. Miller and I.L. Pepper (1988). Survival of a fast-growing strain of lupin rhizobia in Sonoran Desert soils. Soil Biol Biochem 20, 323–327.

    Article  Google Scholar 

  • P.E. Mortimer, M.A. Pérez-Fernández, and A.J. Valentine (2008). The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40, 1019–1027.

    Article  CAS  Google Scholar 

  • B. Mnasri, M. Elarbi, E. Aouani et al. (2007). Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Boil Biochem 39, 1744–1750.

    Article  CAS  Google Scholar 

  • S. Mpepereki, F. Makonese, and A.G. Wollum (1997). Physiological characterization of indigenous rhizobia nodulating Vigna unguiculata in Zimbabwean soils. Symbiosis 22, 275–292.

    Google Scholar 

  • S.L. Namdeo and S.C. Gupta (1992). Response of pulses to microbial inoculants – A review of the done at Sehore. In: Rai, M.M. and Verma, L.N. (eds.), National seminar on oragnic farming, pp. 150–161. Jawahar Nehru Krishi Vishwa Vidyalaya, Jabalpur, India.

    Google Scholar 

  • L. Naya, R. Ladrera, J. Ramos et al. (2007). The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 114, 1104–1114.

    Article  CAS  Google Scholar 

  • N.N. Neo and D.B. Layzell (1997). Phloem glutamine and the regulation of O2 diffusion in legume nodules. Plant Physiol 113, 259–267.

    CAS  PubMed  Google Scholar 

  • V.A. Orchard and F.G. Cook (1983). Relation between soil respiration and soil moisture. Soil Biol Biochem 15, 447–453.

    Article  Google Scholar 

  • C. Oti-Boateng and J.H. Silsbury (1993). The effects of exogenous amino-acid on acetylene-reduction activity of Vicia faba L cv Fjord. Ann Bot 71, 71–74.

    Article  CAS  Google Scholar 

  • S.R. Padgette, K.H. Kolack, X. Delannay et al. (1995). Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35, 1451–1461.

    Article  CAS  Google Scholar 

  • R. Parsons, A. Stanforth, J.A. Raven et al. (1993). Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ 16, 125–136.

    Article  CAS  Google Scholar 

  • M. Peoples and E.T. Crasswell (1992). Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant Soil 141, 13–39.

    Article  CAS  Google Scholar 

  • J.A. Perry, T.L. Wang, T.J. Welham et al. (2003). A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131, 866–871.

    Article  CAS  PubMed  Google Scholar 

  • D.A. Phillips, E.S. Sande, J.A.C. Vriezen et al. (1998). A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl Environ Microbiol 64, 3954–3960.

    CAS  PubMed  Google Scholar 

  • H. Poorter (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105, 77–99.

    Article  Google Scholar 

  • A. Porta-Puglia and M. Aragona (1997). Improvement of grain legumes. General part: Diseases. Field Crops Res 53, 17–30.

    Article  Google Scholar 

  • J. Postma, J.A. Van Veen, and S. Walter (1989). Influence of different initial soil moisture contents on the distribution and population dynamics of introduced Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 21, 437–442.

    Article  Google Scholar 

  • U.B. Priefer, J. Aurag, B. Boesten et al. (2001). Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J Biotech 91, 223–236.

    Article  CAS  Google Scholar 

  • L.C. Purcell, R. Serraj, M. de Silva et al. (1998). Ureide concentration of field-grown soybean in response to drought and the relationship to nitrogen fixation. J Plant Nutr 21, 949–966.

    Article  CAS  Google Scholar 

  • K.S. Raghuwanshi, J.D. Patil, and D.M. Sawant (2003). Response of chickpea to Rhizobium strains under dryland conditions. J Maharashtra Agric Univ 28, 207–208.

    Google Scholar 

  • F.J. Redondo, T. Coba de la Peña, C.N. Morcillo et al. (2009). Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiol 149, 1166–1178.

    Article  CAS  PubMed  Google Scholar 

  • N. Requena, E. Perez-Solis, C. Azcon-Aguilar et al. (2001). Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67, 495–498.

    Article  CAS  PubMed  Google Scholar 

  • J. Ribet and J.J. Drevon (1995). Increase in permeability to oxygen and in oxygen uptake of soybean nodules under deficient phosphorus nutrition. Physiol Plant 94, 298–304.

    Article  CAS  Google Scholar 

  • M.C. Rubio, E.M. González, F.R. Minchin et al. (2002). Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115, 531–540.

    Article  CAS  PubMed  Google Scholar 

  • O.P. Rupela and M.C. Saxena (1987). Nodulation and nitrogen fixation in chickpea. In: Saxena, M.C. and Singh, K.B. (eds.), The chickpea, pp. 191–206. CAB International, Wallingford, Oxfordshire, UK.

    Google Scholar 

  • O.P. Rupela (1992). Natural occurrence and salient characters of non-nodulating chickpea plants. Crop Sci 32, 349–352.

    Article  Google Scholar 

  • O.P. Rupela (1994). Screening for intra-cultural variability for nodulation of chickpea and pigeonpea. In: Rupela, O.P., Kumar Rao, J.V.D.K., Wani, S.P. et al. (eds.), Linking biological nitrogen fixation research in Asia: Report of a meeting of the Asia working group on biological nitrogen fixation in legumes, pp. 75–83. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India.

    Google Scholar 

  • R.K. Sarkar, B. Biswas, G.C. Malik et al. (2003). Productivity of grasspea (Lathyrus sativus L.) under different levels of phosphorus and foliar spray of molybdenum. Lathyrus Lathyrism Newsl 3, 36–37.

    Google Scholar 

  • S. Sassi, E.M. Gonzalez, S. Aydi et al. (2008). Tolerance of common bean to long-term osmotic stress is related to nodule carbon flux and antioxidant defenses: Evidence from two cultivars with contrasting tolerance. Plant Soil 312, 39–48.

    Article  CAS  Google Scholar 

  • J. Schulze and J.J. Drevon (2005). P-deficiency increases the O2 uptake per N2 reduced in alfalfa. J Exp Bot 56, 1779–1784.

    Article  CAS  PubMed  Google Scholar 

  • L. Segovia, D. Pinero, R. Palacios et al. (1991). Genetic structure of a soil population of non symbiotic Rhizobium leguminosarum. Appl Environ Microbiol 57, 426–433.

    CAS  PubMed  Google Scholar 

  • R. Serraj and T.R. Sinclair (1996). Processes contributing to N2-fixation insensitivity to drought in the soybean cultivar Jackson. Crop Sci 36, 961–968.

    Article  Google Scholar 

  • R. Serraj and T.R. Sinclair (1997). Variation in soybean cultivars in dinitrogen fixation response to drought. Agron J 89, 963–969.

    Article  Google Scholar 

  • R. Serraj, T.R. Sinclair, and L.C. Purcell (1999). Symbiotic nitrogen fixation response to drought. J Exp Bot 50, 143–155.

    Article  CAS  Google Scholar 

  • R. Serraj, F.R. Bidinger, Y.S. Cauhan et al. (2003). Management of drought in ICRISAT cereal and legume mandate crops. In: Kijne, J.W., Barker, R., and Molden D. (eds.), Water productivity in agriculture: Limits and opportunities for improvement, pp. 127–144. CAB International, Wallingford.

    Chapter  Google Scholar 

  • K.C. Sharma (2001). Fertilizer management in chickpea under rainfed conditions of Jammu region (J & K). Adv Plant Sci 14, 519–523.

    Google Scholar 

  • N.H. Shoushtari and I.L. Pepper (1985). Mesquite rhizobia isolated from the Sonoran desert: Competitiveness and survival in soil. Soil Biol Biochem 17, 803–806.

    Article  Google Scholar 

  • T.R. Sinclair and R. Serraj (1995). Legume nitrogen fixation and drought. Nature 378, 344.

    Article  CAS  Google Scholar 

  • T.R. Sinclair and V. Vadez (2002). Physiological traits for crop yield improvement in low N and P environments. Plant Soil 245, 1–15.

    Article  CAS  Google Scholar 

  • T.R. Sinclair, R.C. Muchow, J.M. Bennett et al. (1987). Relative sensitivity of nitrogen and biomass accumulation to drought in field grown soybean. Agron J 79, 986–991.

    Article  Google Scholar 

  • B. Singh, B.K. Singh, J. Kumar et al. (2005). Effects of salt stress on growth, nodulation, and nitrogen and carbon fixation of ten genetically diverse lines of chickpea (Cicer arietinum L). Aust J Agri Res 56, 491–495.

    Article  CAS  Google Scholar 

  • K. Singh, S. Singh, V. Singh et al. (1999). Molybdenum nutrition of cowpea in relation to potassium and molybdenum fertilization. Ind J Plant Physiol 3, 227–228.

    Google Scholar 

  • K. Skriver and J. Mundy (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2, 503–512.

    Article  CAS  PubMed  Google Scholar 

  • J.I. Sprent (1971). The effect of water stress on nitrogen-fixing root nodules. I. Effects on the physiology of detached soybean nodules. New Phytol 70, 9.

    Article  CAS  Google Scholar 

  • J.I. Sprent (1972). The effects of water stress on nitrogen fixing root nodules. New Phytol 71, 451–460.

    Article  Google Scholar 

  • J.I. Sprent (2001). Nodulation in legumes. Royal Botanic Gardens, Kew.

    Google Scholar 

  • J.I. Sprent and H.H. Zahran (1988). Infection, development and functioning of nodules under drought and salinity. In: Beck D.P. and Materon L.A. (eds.), Nitrogen fixation by legumes in mediterranean agriculture. Martinus-Nijhoff, Dordrecht.

    Google Scholar 

  • A.H. Stouthamer and S.A.L.M. Kooijman (1993). Why it pays for bacteria to delete disused DNA and to maintain mega plasmids. Anton Leeuw 63, 39–43.

    Article  CAS  Google Scholar 

  • R. Suárez, A. Wong, M. Ramírez et al. (2008). Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21, 958–966.

    Article  PubMed  CAS  Google Scholar 

  • K. Swaraj (1987). Environmental stress and symbiotic nitrogen fixation in legumes. Plant Physiol Biochem 14, 117–130.

    Google Scholar 

  • C. Tang and B.D. Thomson (1996). Effects of solution pH and bicarbonate on the growth and nodulation of a range of grain legumes. Plant Soil 186, 321–330.

    Article  CAS  Google Scholar 

  • R.L. Tate (1995). Soil microbiology (symbiotic nitrogen fixation). John Wiley & Sons, Inc., New York.

    Google Scholar 

  • R.L. Tate (2000). Soil microbiology, 2nd edn. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • D. Thavarajah and R.A. Ball (2006). Drought-induced changes in free amino acid and ureide concentrations of nitrogen-fixing chickpea. Can J Plant Sci 86(1), 149–156.

    CAS  Google Scholar 

  • N.A. Tejera, M. Soussi, C. Lluch et al. (2006). Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Exp Bot 58, 17–24.

    Article  CAS  Google Scholar 

  • J.D. Tenhunen, O.L. Lange, J. Gebel et al. (1984). Changes in photosynthetic capacity, carboxylation efficiency and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. Planta 162, 193–203.

    Article  CAS  Google Scholar 

  • J.D. Tjepkema and C.S. Yocum (1974). Measurement of oxygen partial-pressure within soybean nodules by oxygen microelectrodes. Planta 119, 351–360.

    Article  Google Scholar 

  • V. Vadez, T.R. Sinclair, R. Serraj et al. (2000). Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiol Plant 110, 215–223.

    Article  CAS  Google Scholar 

  • A.W.S.M. Van Egaraat (1975). The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizophere of pea seedlings. Plant Soil 42, 381–386.

    Article  Google Scholar 

  • W.K. Vencill (2002). Herbicide handbook, 8th edn. Weed Science Society of America, Lawrence, KS.

    Google Scholar 

  • B. Venkateswarlu, N. Saharan, M. Maheswari et al. (1990). Nodulation and nitrogen fixation in cowpea and ground nuts during water stress. Field Crop Res 25, 223–232.

    Article  Google Scholar 

  • D. Verdoy, T. Coba de la Peña, F.J. Redondo et al. (2006). Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ 29, 1913–1923.

    Article  CAS  PubMed  Google Scholar 

  • J.C.V. Vu and L.H. Allen (2009). Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. J Plant Physiol, doi:10.1016/j.jplph.2009.01.003.

    Google Scholar 

  • P. Wadisirisuk, S.K.A. Danso, G. Hardarson et al. (1989). Influence of Bradyrhizobium japonicum location and movement on nodulation and nitrogen fixation in soybeans. Appl Environ Microbiol 35, 1711–1716.

    Google Scholar 

  • H.B. Waldon, M.B. Jenkins, R.A. Virginia et al. (1989). Characteristics of woodland rhizobial populations from surface and deep soil environment of the Sonoran Desert. Appl Environ Microbiol 55, 3058–3064.

    CAS  PubMed  Google Scholar 

  • A. Wasilewska, F. Vlad, C. Sirichandra, Y. Redko, F. Jammes, C. Valon, N.F.D. Frey, J. Leung et al. (2008). An update on abscisic acid signaling in plants and more. Mol Plant 1(2), 198–217.

    Article  CAS  PubMed  Google Scholar 

  • I. Winicov and D.R. Bastola (1999). Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120, 473–480.

    Article  CAS  PubMed  Google Scholar 

  • S.C. Wong, I.R. Cowan, G.D. Farquhar et al. (1985). Leaf conductance in relation to rate of CO2 assimilation. III. Influence of water stress and photoinhibition. Plant Physiol 78, 830–834.

    Article  CAS  PubMed  Google Scholar 

  • K. Yamaguchi-Shinozaki and K. Shinozaki (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264.

    Article  CAS  PubMed  Google Scholar 

  • H.H. Zahran (1991). Conditions for successful Rhizobium-legume symbiosis in saline environments. Biol Fertil Soils 12, 73–80.

    Article  Google Scholar 

  • H.H. Zahran (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63, 968–989.

    CAS  PubMed  Google Scholar 

  • H.H. Zahran, M.C. Marin-Manzano, A.J. Sanchez-Raya, E.J. Bedmar, K. Venema, M.P. Rodriguez-Rosales et al. (2007). Effect of salt stress on the expression of NHX-type ion transporters in Medicago intertexta and Metilotus indicus plants. Physiol Plant 131(1), 122–130.

    Article  CAS  PubMed  Google Scholar 

  • H.H. Zahran and J.I. Sprent (1986). Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167, 303–309.

    Article  CAS  Google Scholar 

  • H.H. Zahran, L.A. Rasanen, M. Karsisto et al. (1994). Alteration of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10, 100–105.

    Article  CAS  Google Scholar 

  • J.Y. Zhang, C.D. Broeckling, E.B. Blancaflor et al. (2005). Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42, 689–707.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CA-I, EMG and EL acknowledge funding by the Spanish Ministry of Education and Science through grants AGL2005-0274/AGR and AGL2008-00069/AGR and the Department of Education (228/2008) of the Navarra Government and are grateful to Gabriel Iturriaga, Larry Purcell and Jose Javier Pueyo to share information prior to be published. EL was the holder of a grant from the Spanish Ministry of Education and Science (Plan FPU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kantar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kantar, F. et al. (2010). Efficient Biological Nitrogen Fixation Under Warming Climates. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_15

Download citation

Publish with us

Policies and ethics