Skip to main content

Weed Suppression in Legume Crops for Stress Management

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

Worldwide, weeds constitute a major constraint to the production of food legumes. Weeds can reduce crop yields more than 50% through competition for moisture, and this can be aggravated under the anticipated climate change scenarios. In the future, the spread of invasive alien species of weeds and herbicide resistance, which are partly aggravated by increased global trade and climate change, are likely to pose challenges to weed management and water conservation. In this chapter we will synthesize the state-of-art knowledge on weed management in legume production systems with a major emphasis on anticipated impacts of climate change and alien invasive species on weed management and water conservation. We provide a brief review of the types of weeds and weed effects followed by review of recent developments in the management of weeds in legume cropping systems. We also assess the strength and limitations of each practice and suggest the need for emphasis on the integration of different environmentally friendly control measures that are economically feasible to smallholder farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.M. Abang, B. Bayaa, B. Abu-Irmaileh, and A. Yahyaoui (2007). A participatory farming system approach for sustainable broomrape (Orobanche spp.) management in the Near East and North Africa. Crop Prot 26, 1723–1732.

    Article  Google Scholar 

  • Z. Abbes, M. Kharrat, P. Delavault, P. Simier, and W. Chaïbi (2007). Field evaluation of the resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche foetida Poiret. Crop Prot 26, 1777–1784.

    Article  Google Scholar 

  • M.H. Abd-Alla, S.A. Omar and S. Karanzha (2000). The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14, 191–200.

    Article  Google Scholar 

  • V.D. Aggarwal (1985). Cowpea Striga gesnerioides research. In: Singh, S.R. and Rachie, K.O. (eds.), Cowpea research, production and utilization, pp. 335–340. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • V.D. Aggarwal (1991). Research on cowpea-striga resistance at IITA. In: Kim, S.K. (ed.), Combating Striga in Africa, pp. 90–95. IITA, Ibadan, Nigeria.

    Google Scholar 

  • M. Ahmed and D.A. Wardle (1991). Increasing temperatures may enhance emergence and seedling growth of nodding thistle, summer grass and spiny emex. Proceedings 44th New Zealand Weed and Pest Control Conference: pp. 288–291.

    Google Scholar 

  • A. Anderson, J.A. Baldock, S.L. Rogers, W. Bellotti, and G. Gill (2004). Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea. Aust J Agric Res 55 1059–1070.

    Article  CAS  Google Scholar 

  • B.A. Auld (1997). Bioherbicides. In: Julien, M. and White, G. (eds.), Biological control of weeds: Theory and application, pp. 129–134. Australian Center for International Agricultural Research, Canberra, Monograph no. 49, 192 pp.

    Google Scholar 

  • B.K. Banful, S. Hauser, K. Ofori, and F.K. Kumaga (2007). Weed biomass dynamics in planted fallow systems in the humid forest zone of southern Cameroon. Agroforestry Syst 71, 49–55.

    Article  Google Scholar 

  • D.T. Baumann, L. Bastiaans, and M.J. Kropff (2002). Intercropping system optimization for yield, quality, and weed suppression combining mechanistic and descriptive models. Agron J 94, 734–742.

    Article  Google Scholar 

  • R.H. Bernhard, J.E. Jensen, and C. Andreasen (1999). Prediction of yield loss caused by Orobanche spp. in carrot and pea crops based on the soil seedbank. Weed Res 38, 191–197.

    Article  Google Scholar 

  • J. Bertholet and K.W. Clark (1985). Effect of trifluralin and metribuzin on faba bean growth, development, and symbiotic nitrogen fixation. Can J Plant Sci 65, 9–21.

    Article  CAS  Google Scholar 

  • T. Besufekad, T.K. Das, M. Mahadevappa, T. Taye, and T. Tamado (2005). The weed parthenium: Its distribution, biology, hazards and control measures. Pest Manag J Ethiop 9, 1–17.

    Google Scholar 

  • H.A.J. Bulson, R.W. Snaydon, and C.E. Stopes (1997). Effects of plant density on intercropped wheat and field beans in an organic farming system. J Agri Sci (Camb) 128, 59–71.

    Article  Google Scholar 

  • CABI (2003). Crop protection compendium, CD Documents. CAB International, London.

    Google Scholar 

  • P.M. Carr, J.C. Gardner, B.C. Schartz, S.W. Zwinger, and S.J. Guldan (1995). Grain yield weed biomass of a wheat–lentil intercrop. Agron J 87, 574–579.

    Article  Google Scholar 

  • R.J. Carsky, C. Akakpo, B.B. Singh, and J. Detongnon (2003). Cowpea yield gain from resistance to Striga gesnerioides parasitism in southern Bénin. Exp Agri 39, 327–333.

    Article  Google Scholar 

  • C. Cechin and M.C. Press (1993). Nitrogen relations of the sorghum–Striga hermonthica host–parasite association: Germination, attachment and early growth. New Phytol 124, 681–687.

    Article  CAS  Google Scholar 

  • O. Chaudhry (2008a). Herbicide-resistance and weed-resistance management. Available at: http://www.weedscience.org/In.asp

  • O. Chaudhry (2008b). Futuristic vision on climate change adversity and herbicide technology. Ann Plant Protect Sci 16, 1–5.

    Google Scholar 

  • D. Chikoye, M.V. Manyong, R.J. Carsky, F. Ekeleme, G. Gbehounou, and A. Ahanchede (2001). Response of speargeass (Imperata cylindrica) to cover crops integrated with handweeding and chemical control in maize and cassava. Crop Prot 19, 481–487.

    Article  Google Scholar 

  • E. Çikman and M. Doganlar (2006). Parasitoids of natural populations of Phytomyza orobanchia (Kaltenbach, 1864) (Diptera: Agromyzidae) in Southeastern Anatolia. J Appl Sci Res 2, 327–330.

    Google Scholar 

  • A.E. Conklin, M.S. Erich, M. Liebman, D. Lambert, E.R. Gallandt, and W.A. Halteman (2002). Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant Soil 238, 245–256.

    Article  CAS  Google Scholar 

  • K. Desta (2000). Weed control methods used in Ethiopia. In: Starkey, P. and Simalenga, T. (eds)., Animal power for weed control. Technical Centre for Agricultural and Rural Cooperation (CTA), Wageningen, The Netherlands.

    Google Scholar 

  • D. Dawoud and J. Sauerborn (1994). Impact of drought stress and temperature on Striga hermonthica and Alectra vogelii at early growth stages. Exp Agri 30, 249–257.

    Article  Google Scholar 

  • J.S. Dukes and H.A. Mooney (1999). Does global change increase the success of biological invaders? Trends Ecol Evol 14, 619–630.

    Article  Google Scholar 

  • H. Eizenberg, J. Qolquhoun, and C.A. Malory-Smith (2004). The relationship between temperature and small broomrape (O. minor) parasitism in red clover (Trifolium pratense). Weed Sci 52, 735–741.

    Article  CAS  Google Scholar 

  • F. Ekeleme, D. Chikoye, and I.O. Akobundu (2005). Weed seedbank response to planted fallow and tillage in southwest Nigeria. Agroforestry Forum 63, 299–306.

    Article  Google Scholar 

  • I.M. El-Metwally and M.T. Abdelhamid (2008). Weed control under integrated nutrient management systems in faba bean (Vicia faba) production in Egypt. Planta Daninha 26, 585–594.

    Article  Google Scholar 

  • H.C. Evans (1997). Parthenium hysterophorus: A review of its weed status and the possibilities for biological control. Biocontrol News Inf 18, 89–98.

    Google Scholar 

  • H.C. Evans (2002). Plant pathogens for biological control of weeds. In: Waller, J.M., et al. (ed.), Plant pathologist’s pocket book. CAB International, Wallingford.

    Google Scholar 

  • A. Evidente, M. Fernández-Aparicio, A. Andolfi, D. Rubiales, and A. Motta (2007). Trigoxazonane, a monosubstituted trioxazonane from Trigonella foenum-graecum root exudate, inhibits Orobanche crenata seed germination. Phytochemistry 68, 2487–2492.

    Article  CAS  PubMed  Google Scholar 

  • FAO (1998). Technical Meeting on benefits and risks of transgenic herbicide-resistant crops. Rome, Italy, p. 38.

    Google Scholar 

  • R. Fasil and W. Wogayehu (2008). Parasitic weed research in Ethiopia: Current status and future prospects. A paper presented on the Ninth Ethiopian Weed Science Society (EWSS) Annual Conference, 25–26 December 2008, Addis Ababa, Ethiopia.

    Google Scholar 

  • N. Fauchereau, S. Trzaska, M. Rouault and Y. Richard (2003). Rainfall variability and change in Southern Africa during the 20th century in the global warming context. Nat Hazards 29, 139–154.

    Article  Google Scholar 

  • M. Fernández-Aparicio, J.C. Sillero, A. Perez-de-Luque, and D. Rubiales (2007a). Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res 48, 85–94.

    Article  Google Scholar 

  • M. Fernández-Aparicio, J.C. Sillero, and D. Rubiales (2007b). Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Prot 26, 1166–1172.

    Article  Google Scholar 

  • M. Fernández-Aparicio, A.A. Emeranb, and D. Rubiales (2008a). Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot 27, 653–659.

    Article  Google Scholar 

  • M. Fernández-Aparicio, A. Andolfi, A. Cimmino, D. Rubiales, and A. Evidente (2008b). Stimulation of seed germination of Orobanche species by ophiobolin A and fusicoccin derivatives. J Agr Food Chem 56, 8343–8347.

    Article  CAS  Google Scholar 

  • R. Ford Denison (1999). Ecological risks of genetically-engineered crops. University of California, Davis.

    Google Scholar 

  • D.L. Frost, A.L. Gurney, M.C. Press, and J.D. Scholes (1997). Striga hermonthica reduces photosynthesis in sorghum: The importance of stomatal limitations and a potential role for ABA? Plant Cell Environ 20, 483–492.

    Article  CAS  Google Scholar 

  • C. Funk, M.D. Dettinger, J.C. Michaelsen, J.P. Verdin, M.E. Brown, M. Barlow, and A. Hoell (2008). Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc Natl Acad Sci 10, 11081–11086.

    Article  Google Scholar 

  • J. Gressel, A. Hanafi, G. Head, W. Marasas, A.B. Obilana, J. Ochanda, T. Souissi, and G. Tzotzos (2004). Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23, 661–689.

    Article  Google Scholar 

  • A. Giannini, R. Saravanan, and P. Chang (2003). Oceanic forcing of the Sahel rainfall on interannual to interdecadal time scale. Science 302, 1027–1030.

    Article  CAS  PubMed  Google Scholar 

  • B.D. Hanson and D.C. Hill (2001). Effects of imazethapyr and pendimethalin on lentil (Lens culinaris), pea (Pisum sativum), and a subsequent winter wheat (Triticum aestivum) crop. Weed Technol 15, 190–194.

    Article  CAS  Google Scholar 

  • H. Hauggaard-Nielsen, P. Ambus, and E.S. Jensen (2001). Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crops Res 70, 101–109.

    Article  Google Scholar 

  • R. Haymes and H.C. Lee (1999). Competition between autumn and spring planted grain intercrops of wheat (Triticum aestivum) and field bean (Vicia faba). Field Crops Res 62, 167–176.

    Article  Google Scholar 

  • I.M. Heap (2003). International survey of herbicide-resistant weeds. http://www.weedresearch.com

  • H. Hengsdijk and H. van Kuelen (2002). The effect of temporal variation on inputs and outputs of future-oriented land use systems in West Africa. Agri Ecosyst Environ 91, 245–259.

    Article  Google Scholar 

  • J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, and D. Xiaosu (eds.) (2001). Climate change 2001: The scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • HRAC (2009). International survey of herbicide resistant weeds. http://www.weedscience.org/In.asp (Accessed: March 10, 2009)

  • M. Hulme, R. Doherty, T. Ngara, M. New, and D. Lister (2001). African climate change: 1900–2100. Climate Res 17, 145–168.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001). Synthesis report. Cambridge University Press, Cambridge.

    Google Scholar 

  • J.-L. Jannink, J.H. Orf, N.R. Jordan, and R.G. Shaw (2000). Index selection for weed suppressive ability in soybean. Crop Sci 40, 1087–1094.

    Article  Google Scholar 

  • J.-L. Jannink, N.R. Jordan, and J.H. Orf (2001). Feasibility of selection for high weed suppressive ability in soybean: Absence of tradeoffs between rapid initial growth and sustained later growth. Euphytica 120, 291–300.

    Article  Google Scholar 

  • D.M. Joel, Y. Hershenhorn, H. Eizenberg, R. Aly, G. Ejeta, P.J. Rich, J.K. Ransom, J. Sauerborn, and D. Rubiales (2007). Biology and management of weedy root parasites. In: Janick, J. (ed.), Horticultural reviews, vol. 33, pp. 267–350. John Wiley and Sons, Inc., New York.

    Chapter  Google Scholar 

  • C. Johansen, J.M. Duxbury, S.M. Virmani, C.L.L. Gowda, S. Pande, and P.K. Joshi, (eds.) (2000). Legumes in rice and wheat cropping systems of the Indo-Gangetic Plain – Constraints and opportunities. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics; and Ithaca, New York, USA: Cornell University. 230 pp.

    Google Scholar 

  • S. Johnson (1986). Alien plants drain western waters. The Nature Conservancy News, Oct–Nov 1986.

    Google Scholar 

  • N. Jordan (1993). Prospects for weed control through crop interference. Ecol Appl 3, 84–91.

    Article  Google Scholar 

  • M. Jurado-Expósito and L. García-Torres (2000). Seed treatment for broomrape control. Grain Legumes No 27, 20–21.

    Google Scholar 

  • M. Jurado-Expósito, L. García-Torres, and M. Castejón-Muñoz (1997). Broad bean and lentil seed treatments with imidazolinones for the control of broomrape (Orobanche crenata). J Agri Sci 129, 307–314.

    Article  Google Scholar 

  • A.S. Juraimi, S.H.D. Drennan, and N. Anuar (2005). Competitive Effect of Cynodon dactylon (L.) Pers. on four crop species, soybean [Glycine max (L.) Merr.], maize (Zea mays), spring wheat (Triticum aestivum). Asian J Plant Sci 4, 90–94.

    Article  Google Scholar 

  • V.H. Kabambe, F. Kanampiu, and A. Ngwira (2008). Imazapyr (herbicide) seed dressing increases yield, suppresses Striga asiatica and has seed depletion role in maize (Zea mays L.) in Malawi. Afr J Biotechnol 7, 3293–3298.

    CAS  Google Scholar 

  • S. Kanchan and K.A. Jayachandra (1981). Effects of Parthenium hysterophorus on nitrogen-fixing and nitrifying bacteria. Can J Bot 59, 199–202.

    CAS  Google Scholar 

  • G. Keneni, M. Jarso, and T. Wolabu (2007). Eco-geographic distribution and microcenters of genetic diversity in faba bean (Vicia faba L.) and field pea (Pisum sativum L.) germplasm collections from Ethiopia. East Afr J Sci 1, 10–24.

    Google Scholar 

  • S.M. Khan, A. Zaidi, and M. Aamil (2004). Influence of herbicides on chickpea-Mesorhizobium symbiosis. Agronomie 24, 123–127.

    Article  CAS  Google Scholar 

  • M. Kharrat, M.H. Halila, K.H. Linke, and T. Haddar (1992). First report of Orobanche foetida Poiret on faba bean in Tunisia. FABIS Newsl 30, 46–47.

    Google Scholar 

  • R.K. Kohli and D.R. Batish (1994). Exhibition of allelopathy by Parthenium hysterophorus L. in agroecosystems. Trop Ecol 35, 295–307.

    Google Scholar 

  • O. Klein and J. Kroschel (2002). Biological control of Orobanche spp. with Phytomyza orobanchia, a review. Biocontrol 47, 245–277.

    Article  Google Scholar 

  • H.M. Kruidhof, L. Bastiaans, and M.J. Kropff (2009). Cover crop residue management for optimizing weed control. Plant Soil, DOI 10.1007/s11104-008-9827-6.

    Google Scholar 

  • J.A. Lane, T.H.M. Moore, D.V. Child, K.F. Cardwell, B.B. Singh, and J.A. Bailey (1994). Virulence characteristics of new races of the parasitic angiosperm, Striga gesnerioides, from southern Benin on cow pea (Vigna unguiculata). Euphytica 72, 183–188.

    Article  Google Scholar 

  • M. Liebman and A.S. Davis (2000). Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40, 27–47.

    Article  Google Scholar 

  • M. Liebman and E. Dyck (1993). Crop rotation and intercropping strategies for weed management. Ecol Appl 3, 92–122.

    Article  Google Scholar 

  • M. Liben, T. Tadesse, and A. Assefa (2001). Determination of nitrogen and phosphorus fertilizer levels in different maize-faba bean intercropping patterns in North western Ethiopia. Proceedings of the Seventh Eastern and Southern Africa Maize Regional Conference, pp. 513–518.

    Google Scholar 

  • K.H. Linke, C. Vorlaender, and M.C. Saxena (1990). Occurrence and impact of Phytomyza orobanchia (Diptera : Agromyzidae) on Orobanche crenata (Orobanchaceae) in Syria. Entomophaga 35, 633–639.

    Article  Google Scholar 

  • P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo (eds.) (2006). Mediterranean climate variability. Elsevier, Amsterdam, 438 pp.

    Google Scholar 

  • D.B. Lobell, M.B. Burke, C. Tebaldi, M.D. Mastrandrea, W.P. Falcon, and R.L. Naylor (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610.

    Article  CAS  PubMed  Google Scholar 

  • S.P. Long, E.A. Ainsworth, A.B.D. Leakey, J. Nösberger, and D.R. Ort (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921.

    Article  CAS  PubMed  Google Scholar 

  • B.S. Malik, S.A. Hussain, and A.M. Haqqani (1982). Efficacy of herbicides in chickpea. Int Chickpea Newsl 6, 15.

    Google Scholar 

  • L.M. Manici, F. Caputo, and V. Babini (2004). Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263, 133–142.

    Article  CAS  Google Scholar 

  • A.M. MÃ¥rtensson (1992). Effects of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24, 435–445.

    Article  Google Scholar 

  • S.K. Mathur and V. Muniyappa (1993). Parthenium phyllody disease in India. In: Raychaudhuri, S.P. and Teakle, D.S. (eds.), Management of plant diseases caused by fastidious prokaryotes: Proceedings of the fourth Regional Workshop on plant Mycoplasma, pp. 21–34. University of Queensland, Australia.

    Google Scholar 

  • G.K. McDonald (2003). Competitiveness against grass weeds in field pea genotypes. Weed Res 43, 48–58.

    Article  Google Scholar 

  • J.H. Myers and D. Bazeley (2003). Ecology and control of introduced plants. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • J. Mishra, A.K. Pandey, and S.K. Hasija (1995). Evaluation of Sclerotium rolfsii Sacc as mycoherbicide for Parthenium. Ind Phytopathol 48, 476–479.

    Google Scholar 

  • K.I. Mohamed, M. Papes, R. Williams, B.W. Benz, and A.T. Peterson (2006). Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae. Ambio 35, 281–288.

    Article  PubMed  Google Scholar 

  • C.L. Mohler and M. Liebman (1987). Weed productivity and composition in sole crops and intercrops of barley and field pea. J Appl Ecol 24, 685–699.

    Article  Google Scholar 

  • T.H.M. Moore, J.A. Lane, D.V. Child, G.M. Arnold, J.A. Bailey, and G. Hoffmann (1995). New sources of resistance of cowpea (Vigna unguiculata) to Striga gesnerioides, a parasitic angiosperm. Euphytica 84, 165–174.

    Article  Google Scholar 

  • J.I.L. Morison, N.R. Baker, P.M. Mullineaux, and W.J. Davies (2008). Improving water use in crop production. Phil Trans R Soc B 363, 639–658.

    Article  CAS  PubMed  Google Scholar 

  • U. Mulisa, T. Taye, and Y. Firehun (2008). Impacts of Parthenium hysterophorus L. on herbaceous plant diversity in rangelands of Fentale district in the central rift valley of Ethiopia. Ethiop J Weed Manag 1, 25–41.

    Google Scholar 

  • L.J. Musselman (1980). The biology of Striga, Orobanche, and other root-parasitic weeds. Ann Rev Phytopathol 18, 463–489.

    Article  Google Scholar 

  • S. Niu, Z. Yuan, Y. Zhang, W. Liu, L. Zhang, J. Huang, and S. Wan (2005). Photosynthetic responses of C3 and C4 species to seasonal water variability and competition. J Exp Bot 56, 2867–2876.

    Article  CAS  PubMed  Google Scholar 

  • S.N.C. Okonkwo and V. Raghavan (1982). Studies on the germination of seeds of the root parasites, Alectra vogelii and Striga gesnerioides I. Anatomical changes in the embryos. Am J Bot 69, 1636–1645.

    Article  Google Scholar 

  • A. Oswald, J.K. Ransom, J. Kroschel, and J. Sauerborn (2002). Intercropping controls Striga in maize based farming systems. Crop Prot 21, 367–374.

    Article  Google Scholar 

  • P. Oudhia, S.S. Kolhe, and R.S. Tripathi (1997). Allelopathic effect of white top (Parthenium hysterophorus L.) on chickpea. Legume Res 20, 117–120.

    Google Scholar 

  • M. Pagani, K.H. Freeman, and M.A. Arthur (1999). Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879.

    Article  CAS  PubMed  Google Scholar 

  • J.P. Palutikof and T.M.L. Wigley (1996). Developing climate change scenarios for the Mediterranean Region. In: Jeftic, L., Keckes, S. and Pernetta, J.C. (eds.), Climatic change and the Mediterranean, vol. 2, pp. 27–55. Edward Arnold, London.

    Google Scholar 

  • C. Parker and C.R. Riches (1993). Parasitic weeds of the world: Biology and control. CAB International, Wallingford.

    Google Scholar 

  • D.T. Patterson (1995). Weeds in a changing climate. Weed Sci 43, 685–701.

    CAS  Google Scholar 

  • A. Pérez-de-Luque, J.V. Jorrín, and D. Rubiales (2004). Crenate broomrape control in pea by foliar application of benzothiadiazole (BTH). Phytoparasitica 32, 21–29.

    Article  Google Scholar 

  • A. Pérez-de-Luque, J. Jorrín, J.I. Cubero, and D. Rubiales (2005). Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45, 379–387.

    Article  Google Scholar 

  • A. Pérez-de-Luque, M.T. Moreno, and D. Rubiales (2007). Host plant resistance against broomrapes (Orobanche spp.): Defence reactions and mechanisms of resistance. Ann Appl Biol, doi:10.1111/j.1744–7348.2007.00212.x.

    Google Scholar 

  • S.L. Poggio (2005). Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agri Ecosyst Environ 109, 48–58.

    Article  Google Scholar 

  • A.J. Pujadas-Salvà (2002). Orobanche L. In: López-Sáez J.A., Catalán P., and Sáez L.I. (eds.), Plantas Parásitas en la Península ibérica e Islas Baleares, pp. 348–440. Mundi Prensa, Madrid, Spain.

    Google Scholar 

  • S.C. Rao, B.K. Northup, and H.S. Mayeux (2005). Candidate cool-season legumes for filling forage deficit periods in the southern Great Plains. Crop Sci 45, 2068–2074.

    Article  Google Scholar 

  • G.C. Reiss and J.A. Bailey (1998). Striga gesnerioides parasitizing cowpea: Development of infection structures and mechanisms of penetration. Ann Bot 81, 431–440.

    Article  Google Scholar 

  • R.J. Rennie and S. Dubetz (1984). Effect of fungicides and herbicides on nodulation and N2-fixation in soybean files lacking indigenous Rhizobium japonicum. Agron J 76, 451–454.

    Article  CAS  Google Scholar 

  • C. Riches (2002). Witchweeds of pulse crops in Africa. Grain Legumes No 35, 25–26.

    Google Scholar 

  • C.R. Riches, K.A. Hamilton, and C. Parker (1992). Parasitism of grain legumes by Alectra species (Scrophulariaceae). Ann Appl Biol 121, 361–370.

    Article  Google Scholar 

  • N. Rispail, M.-A. Dita, C. González-Verdejo, A. Pérez-de-Luque, M.-A. Castillejo, E. Prats, B. Román, J. Jorrín, and D. Rubiales (2007). Plant resistance to parasitic plants: Molecular approaches to an old foe. New Phytol 173, 703–712.

    Article  CAS  PubMed  Google Scholar 

  • D. Rubiales, A. Pérez-de-Luque, J.I. Cubero, and J.C. Sillero (2003). Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot 22, 865–872.

    Article  Google Scholar 

  • D. Rubiales, C. Alcántara, and J.C. Sillero (2004). Variation in resistance to Orobanche crenata in species of Cicer. Weed Res 44, 27–32.

    Article  Google Scholar 

  • D. Rubiales, M. Sadiki, and B. Román (2005). First report of Orobanche foetida on common Vetch (Vicia sativa) in Morocco. Plant Disease 89, 528.

    Article  Google Scholar 

  • D. Rubiales, A. Pérez-de-Luque, J.C. Sillero, B. Román, M. Kharrat, S. Khalil, D.M. Joel, and C. Riches (2006). Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147, 187–199.

    Article  Google Scholar 

  • S.A. Saad El-Din (2003). Efficiency of some weed control treatments on growth, yield and its components of broad bean (Vicia faba L.) and associated weeds. Egypt J Appl Sci 18, 586–604.

    Google Scholar 

  • M.C. Saxena (1987). Agronomy of chickpea. In: Saxena, M.C. and Singh, K.B. (eds.), The chickpea, pp. 207–232. C.A.B. International, Wallingford, Oxen, UK.

    Google Scholar 

  • F.A.A. Sharara, N.K. Messiha, and S.A. Ahmed (2005). Performance of some faba bean cultivars and associated weeds to some weed control treatments. Egypt J Appl Sci 20, 101–105.

    Google Scholar 

  • J. Sauerborn, D. Müller-Stöver, and J. Hershenhorn (2007). The role of biological control in managing parasitic weeds. Crop Prot 26, 246–254.

    Article  Google Scholar 

  • D. Schimel (2006). Climate change and crop yields: Beyond Cassandra. Science 312, 1889–1890.

    Article  CAS  PubMed  Google Scholar 

  • A. Shabbir and R. Bajwa (2006). Distribution of parthenium weed (Parthenium hysterophorus L.), an alien invasive weed species threatening the biodiversity of Islamabad. Weed Biol Manag 6, 89–95.

    Article  Google Scholar 

  • I. Shiklomanov (2001). World Water Resources at the Beginning of the 21st Century. International Hydrological Series of the United Nations Educational, Scientific, and Cultural Organization (UNESCO), Cambridge University Press, Cambridge, UK. 711 pp.

    Google Scholar 

  • G. Sileshi (1997). Potential biocontrol agents for the blue couch grass Digitaria abyssinica in East Africa. Int J Pest Manag 43, 173–176.

    Article  Google Scholar 

  • G. Sileshi (1998). Potential biocontrol agents for Bermuda grass in eastern Ethiopia. Pest Manag J Ethiop 2, 102–105.

    Google Scholar 

  • G. Sileshi, E. Kuntashula, and P.L. Mafongoya (2006). Effect of improved fallows on weed infestation in maize in eastern Zambia. Zambia J Agri Sci 8, 6–12.

    Google Scholar 

  • G. Sileshi, G. Schroth, M.R. Rao, and H. Girma (2008a). Weeds, diseases, insect pests and tri-trophic interactions in tropical agroforestry. In: Batish, D.R., Kohli, R.K., Jose, S., and Singh, H.P. (eds.), Ecological basis of agroforestry, pp. 73–94. CRC Press, Boca Raton, FL.

    Google Scholar 

  • G. Sileshi, F.K. Akinnifesi, O.C. Ajayi, and F. Place (2008b). Meta-analysis of maize yield response to planted fallow and green manure legumes in sub-Saharan Africa. Plant Soil 307, 1–19.

    Article  CAS  Google Scholar 

  • J.C. Sillero, M.T. Moreno, and D. Rubiales (2005). Sources of resistance to crenate broomrape among species of Vicia. Plant Dis 89, 23–27.

    Article  Google Scholar 

  • B.B. Singh and A.M. Emechebe (1997). Advances in research on cowpea Striga and Alectra. In: Singh, B.B., Mohan Raj, D.R., Dashiel, K.E., and Jackai, L.E.N. (eds.), Advances in cowpea research, pp. 215–224. IITA/JIRCAS, Ibadan, Nigeria.

    Google Scholar 

  • G. Singh and D. Wright (1999). Effects of herbicides on nodulation, symbiotic nitrogen fixation, growth and yield of pea (Pisum sativum). J Agri Sci 133, 21–30.

    Article  CAS  Google Scholar 

  • G. Singh and D. Wright (2002). Effects of herbicides on nodulation and growth of two varieties of peas (Pism sativum). Acta Agron Hungarica 50, 337–348.

    Article  CAS  Google Scholar 

  • B.B. Singh, A.M. Emechebe, and I.D.K. Atokple (1993). Inheritance of Alectra resistance in cowpea genotype B 301. Crop Sci 33, 70–72.

    Article  Google Scholar 

  • G. Singh and R.S. Jolly (2004). Effect of herbicides on the weed infestation and grain yield of soybean (Glycine max). Acta Agronomica Hungarica 52, 199–203.

    Article  CAS  Google Scholar 

  • H.P. Singh, D.R. Batish, J.K. Pandher, and R.K. Kohli (2003). Assessment of allelopathic properties of Parthenium hysterophorus residues. Agri Ecosyst Environ 95, 537–541.

    Article  Google Scholar 

  • B.B. Singh, O.O. Olufajo, M.F. Ishiyaku, R.A. Adeleke, H.A. Ajeigbe, and S.G. Mohammed (2006). Registration of six improved germplasm lines of cowpea with combined resistance to Striga gesnerioides and Alectra vogelii. Crop Sci 46, 2332–2333.

    Article  Google Scholar 

  • M.C. Smith, J. Holt, and M. Webb (1993). A population model of the parasitic weed Striga hermonthica (Scrophulariaceae) to investigate the potential of Smicronyx umbrinus (Coleoptera: Curculionidae) for biological control in Mali. Crop Prot 12, 470–476.

    Article  Google Scholar 

  • M.B. Solh and M. Palk (1990). Weed control in chickpea. Options Méditerranéennes Série Séminaires 9, 93–99.

    Google Scholar 

  • S.L. Sprout, L.M. Nelson and J.J. Germida (1992). Influence of metribuzin on the Rhizobium leguminosarum – lentil (Lens culinaris) symbiosis. Can J Mic 38, 343–349.

    Article  CAS  Google Scholar 

  • T. Taye (2005). Parthenium hysterophorus L. In: Crop protection compendium 2004. CAB International, Wallingford.

    Google Scholar 

  • T. Taye (2007). The prospects of biological control of weeds in Ethiopia. Ethiop J Weed Manag 1, 63–78.

    Google Scholar 

  • T. Taye, C. Obermeier, G. Einhorn, E. Seemüller, and C. Büttner (2004a). Phyllody disease of Parthenium weed in Ethiopia. Pest Manag J Ethiop 8, 39–50.

    Google Scholar 

  • T. Taye, G. Einhorn, M. Gossmann, C. Büttner, and R. Metz (2004b). The potential of Parthenium rust as biological control of Parthenium weed in Ethiopia. Pest Manag J Ethiop 8, 83–95.

    Google Scholar 

  • R. Tuberosa, S. Giuliani, M.A.J. Parry, and J.L. Araus (2007). Improving water use efficiency in Mediterranean agriculture: What limits the adoption of new technologies? Ann Appl Biol 150, 157–162.

    Article  Google Scholar 

  • M.R. Valderrama, B. Román, Z. Satovic, D. Rubiales, J.I. Cubero, and A.M. Torres (2004). Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44, 323–328.

    Article  CAS  Google Scholar 

  • J. Vandermeer (1989). The ecology of intercropping. Cambridge University Press, Cambridge, 237 pp.

    Google Scholar 

  • M.C. Vaz Patto, R. Díaz-Ruiz, Z. Satovic, N.B. Romá, A.J. Pujadas-Salvà, and D. Rubiales (2008). Genetic diversity of Moroccan populations of Orobanche foetida: Evolving from parasitising wild hosts to crop plants. Weed Res 48, 179–186.

    Article  Google Scholar 

  • D. Vidal, J. Martinez, C. Bergareche, A.M. Miranda, and E. Simon (1992). Effect of methabenzthiazuron on growth and nitrogenase activity in Vicia faba. Plant Soil 144, 235–245.

    Article  CAS  Google Scholar 

  • M. Weiß, M. Flörke, L. Menzel, and J. Alcamo (2007). Model-based scenarios of Mediterranean droughts. Adv Geosci 12, 145–151.

    Article  Google Scholar 

  • D.W. Wolfe and J.D. Erickson (1993). Carbon dioxide effects on plants: Uncertainties and implications for modeling crop response to climate change. In: Kaiser, H.M. and Drennen, T.E. (eds.), Agricultural dimensions of global climate change, pp. 153–178. St. Lucie Press, St. Lucie, FL.

    Google Scholar 

  • C.S. Wortmann (1993). Contribution of bean morphological characteristics to weed suppression. Agron J 85, 840–843.

    Article  Google Scholar 

  • R.S. Yadav (1998). Effects of weed removal in clusterbean (Cyamopsis tetragonoloba) under different rainfall situations in an arid region. J Agron Crop Sci 181, 209–214.

    Article  Google Scholar 

  • K. Yoneyama, Y. Takeuchi, M. Ogasawara, M. Konnai, Y. Sugimoto, and T. Sassa (1998). Cotylenins and fusicoccins stimulate seed germination of Striga hermonthica (Del.) Benth and Orobanche minor Smith. J Agr Food Chem 46, 1583–1586.

    Article  CAS  Google Scholar 

  • A. Zaidi, M.S. Khan, and P.Q. Rizvi (2005). Effect of herbicides on growth, nodulation and nitrogen content of greengram. Agron Sustain Dev 25, 497–504.

    Article  CAS  Google Scholar 

  • L.H. Ziska and J.R. Teasdale (2000). Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. J Plant Physiol 27, 159–166.

    CAS  Google Scholar 

  • L.H. Ziska (2002a). The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Global Change Biol 6, 899–904.

    Article  Google Scholar 

  • L.H. Ziska (2002b). Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed Sci 49, 622–627.

    Article  Google Scholar 

  • L.H. Ziska and K. George (2004). Rising carbon dioxide and invasive, noxious plants: Potential threats and consequences. World Resour Rev 16, 427–447.

    Google Scholar 

  • L.H. Ziska, S.S. Faulkner, and J. Lydon (2004). Changes in biomass and root:shoot ratio of field-grown Canada thistle (Cirsium arvense) with elevated CO2: Implications for control with glyphosate. Weed Sci 52, 584–588.

    Article  CAS  Google Scholar 

  • L.H. Ziska, J.R. Teasdale, and J.A. Bunce (1999). Future atmospheric carbon dioxide concentrations may increase tolerance to glyphosate. Weed Sci 47, 608–615.

    CAS  Google Scholar 

Download references

Acknowledgments

The first author was supported by the Sustainable Agriculture Initiative of the Council for the Development of Social Science Research in Africa (CODESRIA) – International Foundation for Science (IFS). The authors also gratefully acknowledge financial support from the Canadian International Development Agency (CIDA), Swedish International Development Agency (Sida) and Irish Aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudeta W. Sileshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sileshi, G.W., Tessema, T. (2010). Weed Suppression in Legume Crops for Stress Management. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_14

Download citation

Publish with us

Policies and ethics