Skip to main content

Efficient Root System in Legume Crops to Stress Environments

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

Food grain legumes are very important as source of protein in many parts of the world. Climate change may bring about increased aridity to extend areas of the world. Thus it is important to evaluate the effects of elevated CO2 in association with other stress factors, namely high temperature and water deficit. Water is a pre-requisite for plant growth. Water is taken up by the plants via its roots, transported to its leaves, and lost to the atmosphere as vapors. This continuum involves retention and movement of water within the soil, proliferation of root system in the soil and uptake of water by the plants in relation to evaporative demand. In this chapter we will refer to some research on managing root system development and structure of leguminous plants for efficient water use under drought stress. Most of food grain legumes are usually grown in marginal areas under rainfed conditions and their yields are fairly low. There is genetic variation existing among different legume species. The total root length beneath cool-season food legume crops could be about five to 10 times smaller than that below same area of cereal crops. Deeper root system and larger root dry mass could be associated with better avoidance to soil water limitation in drought tolerant legume than in drought-sensitive ones. The effectiveness of root traits in improving drought avoidance may vary depending on growth environment, e.g., moisture status of the soil. Although the importance of root traits in drought avoidance is well-recognized, other plant mechanisms for coping with drought stress are not well understood in food legumes. Case studies on managing root systems of soybean, faba bean and chickpea for efficient water use under drought conditions are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • M.T. Abdelhamid, J. Palta, E. Veneklaas, C. Atkins, K.H.M. Siddique, and N.C. Turner (2008). Effect of surface roots drying on water relations, gas exchange, nodulation, nitrogen fixation and growth of faba bean (Vicia faba L.), Egypt J Agron 30(2), 263–277.

    Google Scholar 

  • M.T. Abdelhamid, M.B. Shokr, and M.A. Bekheta (2009). Effects of induced salinity on growth, root characteristics and leaf nutrient accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance. Agri Res J, Suez Canal University, Egypt, 9(1), 59–67.

    Google Scholar 

  • M.Y. Ali, C. Johansen, L. Krishnamurthy, and A. Hamid (2005). Genotypic variation in root systems of chickpea (Cicer arietinum L.) across environments. J Agron Crop Sci 191, 464–472.

    Article  Google Scholar 

  • M.Y. Ali, L. Krishnamurthy, N.P. Saxena, O.P. Rupela, J. Kumar, and C. Johansen (2002). Scope for manipulation of mineral acquisition in chickpea. In: Adu-Gyamfi, J.J. (ed.), Food security in nutrient-stressed environments: Exploiting plants’genetic capabilities, pp. 65–176. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • S.T. Ali-Khan (1977). Root and shoot development in peas. II. Effects of temperature and genotype-environment interactions in six root and shoot characters of seedlings. Ann Appl Biol 85, 137–146.

    Article  Google Scholar 

  • M.R. Anwar, B.A. McKenzie, and G.D. Hill (2003). Water-use efficiency and the effect of water deficits on crop growth and yield of kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate. J Agric Sci (Cambridge) 141, 285–301.

    Article  Google Scholar 

  • D. Atkinson, G. Berta, and J.E. Hooker (1994). Impact of mycorrhizal colonization on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi, S. and Schüepp, H. (eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems, pp. 89–99. Birkhäuser-Verlag, Basel, Switzerland.

    Google Scholar 

  • J.G. Benjamin and D.C. Nielsen (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97, 248–253.

    Article  Google Scholar 

  • G.S. Brar, J.F. Gomez, B.L. McMichael, A.G. Matches, and H.M. Taylor (1990). Root development of 12 forage legumes as affected by temperature. Agron J 82, 1024–1026.

    Article  Google Scholar 

  • S.C. Brown, P.J. Gregory, P.J.M. Cooper, and J.D.H. Keatinge (1989). Root and shoot growth and water use of chickpea (Cicer arietinum) grown in dryland conditions: Effect of sowing date and genotype. J Agric Sci Camb 113, 41–49.

    Article  Google Scholar 

  • C.G. Campbell, R.B. Mehra, S.K. Agrawal, Y.Z. Chen, A.M. Abde El-Moneim, H.I.T. Khawaja, C.R. Yadov, J.U. Tay, and W.A. Araya (1994). Current status and future strategy in breeding grasspea (Lathyrus sativus). Euphytica 73, 167–175.

    Article  Google Scholar 

  • S. Chandra, H.K. Buhariwalla, J. Kashiwagi, S. Harikrishna, K. Rupa Sridevi, L. Krishnamurthy, R. Serraj, and J.H. Crouch (2004). Identifying QTL-linked markers in marker-deficient crops. In 4th International Crop Science Congress, 26 Sep.–1 Oct. 2004, Brisbane, Australia. [Online].

    Google Scholar 

  • E.A. Curl and B. Truelove (1986). The rhizosphere. Springer-Verlag, Berlin, 288 pp.

    Google Scholar 

  • W. Day and B.J. Legg (1983). Water relations and irrigation response. In: Hebblethwaite, P.D. (ed.), The Faba bean, pp. 217–231. Butterworths, London.

    Google Scholar 

  • A.H. El Nadi, R. Brouwer, and J.Th. Locher (1969). Some responses of the root and the shoot of Vicia faba plants to water stress. Neth J Agric Sci 17, 133–142.

    Google Scholar 

  • M.S. El-Shazly (1993). Root distribution and relationship of root length to leaf area of different genotypes of faba bean. FABIS Newsletter 32, 25–30.

    Google Scholar 

  • C.D. Foy (1992). Soil chemical factors limiting plant growth. In: Hatfield, J.L. and Steward, B.A. (eds.), Limitations to plant root growth, pp. 97–149. Springer-Verlag, New York, USA.

    Google Scholar 

  • T.E. Fraser, W.K. Silk, and T.L. Rost (1990). Effects of low water potential on cortical cell length in growing regions of maize roots. Plant Physiol 93, 648–651.

    Article  CAS  PubMed  Google Scholar 

  • J.R. Frederick, C.R. Camp, and P.J. Bauer (2001). Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci 41, 759–763.

    Article  Google Scholar 

  • P.M. Gaur, L. Krishnamurthy, and J. Kashiwagi (2008). Improving drought-avoidance root traits in chickpea (Cicer arietinum L.) -Current Status of Research at ICRISAT. Plant Prod. Sci 11(1), 3–11.

    Article  Google Scholar 

  • P.J. Gregory (1988). Root growth of chickpea, faba bean, lentil, and pea and effects of water and salt stress. In: Summerfield, R.J. (ed.), World crops: Cool season food legumes, pp. 857–867. Kluwer Academic, London.

    Google Scholar 

  • A. Hamblin and D. Tennant (1987). Root length density and water uptake in cereals and grain legumes: How well are they correlated?. Aust J Agric Res 38, 513–527.

    Article  Google Scholar 

  • P. Hebblethwaite (1982). The effects of water stress on the growth, development and yield of Vicia faba L. In: Hawtin, G. and Webb, C. (eds.), Faba bean improvement, pp. 165–175. Martinus Nijhoff, The Netherlands.

    Google Scholar 

  • M.M. Husain, J.B. Reid, H. Othman, and J.N. Gallagher (1990). Growth and water use of faba beans (Vicia faba) in a sub- humid climate I. Root and shoot adaptations to drought stress. Field Crops Res 23, 1–17.

    Article  Google Scholar 

  • B. Hüttel, P. Winter, K. Weising, W. Choumane, F. Weigand, and G. Kahl (1999). Sequence-tagged microsatellite-site markers for chickpea (Cicer arietinum L.). Genome 42, 210–217.

    Article  PubMed  Google Scholar 

  • ICARDA (International Center for Agricultural Research in the Dry Areas). (1989). Food legume improvement program. In Annual report 1989. ICARDA, Aleppo, Syria. 185–191.

    Google Scholar 

  • J. Itani, N. Utsunomiya, and S. Shigenaga (1992). Drought tolerance of cowpea. I. Studies on water absorption ability of cowpea (Vigna unguicuata (L.) Walp. Var. unguiculata). Jpn J Trop Agric 36, 37–44.

    Google Scholar 

  • M.B. Jackson (1985). Ethylene and responses of plants to soil waterlogging and submergence. Ann Rev Plant Physiol 36, 145–174.

    CAS  Google Scholar 

  • A.P. Jupp and E.I. Newman (1987). Morphological and anatomical effects of severe drought on the roots of Lolium perenne L. New Phytologist 105, 393–402.

    Article  Google Scholar 

  • B.A. Kahn and P.J. Stoffella (1987). Root morphology characteristics of field-grown cowpeas. J Am Soc Hort Sci 112, 402 –406.

    Google Scholar 

  • J. Kashiwagi, L. Krishnamurthy, J.H. Crouch, and R. Serraj (2005a). Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res 95, 171–181.

    Article  Google Scholar 

  • J. Kashiwagi, L. Krishnamurthy, J.H. Crouch, and R. Serraj (2006). Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res 95, 171–181.

    Article  Google Scholar 

  • J. Kashiwagi, L. Krishnamurthy, H.D. Upadhyaya, H. Krishna, S. Chandra, V. Vincent, and R. Serraj (2005b). Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146, 213–222.

    Article  Google Scholar 

  • T.C. Kaspar, C.D. Stanley, and H.M. Taylor (1978). Soybean root growth during the reproductive stages of development. Agronomy 70, 105–1107.

    Article  Google Scholar 

  • T.C. Kaspar, H.M. Taylor, and R.M. Shibles (1984). Taproot-elongation rates of soybean culivars in the glasshouse and their relation to field rooting depth. Crop Sci 24, 916–920.

    Article  Google Scholar 

  • Y. Kono, K. Tomida, J. Tatsumi, T. Nonoyama, A. Yamauchi, and J. Kitano (1987). Effects of soil moisture conditions on the development of root systems of soybean plants (Glycine max Merr.). Jpn J Crop Sci 56, 597–607.

    Google Scholar 

  • P.J. Kramer (1983). Water relations of plants. Academic Press, New York, 489 p

    Google Scholar 

  • L. Krishnamurthy, O. Ito, and C. Johansen (1996). Genotypic differences in root growth dynamics and its implications for drought resistance in chickpea. In: Ito O., Jhansen C., Adu Gyamfi J.J., Katayama K., Kumar Rao J.V.D.K., and Rego T.J. (eds.), Dynamics of Roots and Nitrogen in cropping systems of the semi-Arid Tropics. JIRCAS Agriculture Series No. 3, pp. 235–250. Japan International Research Center for agriculture science, Tsukuba.

    Google Scholar 

  • L.-J. Lang, Z. Yu, Z. Zheng, M. Xu, and H. Ying (1993). Faba bean in China: State-of-the-art review. ICARDA, Aleppo.

    Google Scholar 

  • R.J. Lawn and C.S. Ahn (1985). Mung bean (Vigna radiate (L.) Wilczek/Vigna mung (L.) Hepper). In: Summerfield, R.J. and Roberts, E.H. (eds.), Grain legume crops, pp. 584–623. William Coolins Sons & Co. Ltd, London.

    Google Scholar 

  • J. Lichtenzveig, C. Scheuring, J. Dodge, S. Abbo, and H.B. Zhang (2005). Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110, 492–510.

    Article  CAS  PubMed  Google Scholar 

  • S.P. Loss and K.H.M. Siddique (1997). Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments: I. Seed yield and yield components. Field Crops Res. 52, 17–28.

    Article  Google Scholar 

  • B.R. Loveys, P.R. Dry, M. Stoll, and M.G. McCarthy (2000). Using plant physiology to improve the water use efficiency of horticultural crops. Acta Hort 537, 187–199.

    Google Scholar 

  • M.A. Matthews and M.M. Anderson (1988). Fruit ripening in Vitis vinifera L. responses to seasonal water deficits. Am J Enol Vitic 39, 313–320.

    Google Scholar 

  • H. Medrano, M.M. Chaves, C. Porqueddu, and S. Caredda (1998). Improving forage crops for semi-arid areas. Out Agric 27, 89–94.

    Google Scholar 

  • M.W. Mia, A. Yamauchi, and Y. Kono (1996). Root system structure of six food legume species: Inter- and intraspecific variations. Jpn J Crop Sci 65, 131–140.

    Google Scholar 

  • T. Milan, H.J. Clarke, K.H.M. Siddique, H.K. Buhariwala, P.M. Gaur, J. Kumar, J. Gil, G. Kahl, and P. Winter (2006). Chickpea molecular breeding: New tools and concepts. Euphytica 147, 81–103.

    Article  Google Scholar 

  • D.E. Molyneux and W.J. Davies (1983). Rooting pattern and water relations of three pasture grasses in drying soil. Oecologia 58, 220–224.

    Article  Google Scholar 

  • F.J. Muehlbauer, J.I. Cubero, and R.J. Summer-field (1985). Lentil (lens culinaris Medic.). In: Summerfield, R.J. and Robets, E.H. (eds.), Grain legume crops, pp. 266–311. William Coolins Sons & Co. Ltd., London.

    Google Scholar 

  • J.E. Mullet and M.S. Whitsitt (1997). Plant cellular responses to water deficit. In: Belhassen, E. (ed.), Drought tolerance in higher plants: Genetical, physiological and molecular biological analysis, pp. 41–46. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • C.G. MuÅ„oz-Perea, H. Terán, R.G. Allen, J.L. Wright, D.T. Westermann, and S.P. Singh (2006). Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46, 2111–2120.

    Article  Google Scholar 

  • P.R. Newman and L.E. Mosser (1988). Seedling root development and morphology of cool-season and warm-season forage grasses. Crop Sci 28, 148–151.

    Article  Google Scholar 

  • O. Osonubi and W.J. Davies (1981). Root growth and water relations of Oak and birch seedlings. Oecologia 51, 343–350.

    Article  Google Scholar 

  • J.C. O’Toole and W.L. Bland (1987). Genotypic variation in crop plant root systems. Adv Agron 41, 91–145.

    Article  Google Scholar 

  • J. Palta, N.C. Turner, and R.J. French (2004). The yield performance of lupin genotypes under terminal drought in a Mediterranean-type environment. Aust J Agric Res 55, 1–11.

    Article  Google Scholar 

  • R.K. Pandey, W.A.T. Herrera, A.N. Villegas, and J.W. Pendleton (1984). Drought response of grain legumes under irrigation gradiebt : III. Plant growth. Agron J 76, 557–560.

    Article  Google Scholar 

  • J.R. Pardales, Jr. and Y. Kono (1990). Development of sorghum root system under increasing drought stress. Jpn J Crop Sci 59, 752–761.

    Google Scholar 

  • R.L. Peterson (1992). Adaptation of root structure in relation to biotic and abiotic factors. Can J Bot 70, 661–675.

    Google Scholar 

  • H.A. Pinheiro, F.M. DaMatta, A.R.M. Chaves, E.P.B. Fontes, and M.E. Loureiro (2004). Drought tolerance as related to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci 167, 1307–1314.

    Article  CAS  Google Scholar 

  • A. Poljakoff-Mayber and H.R. Lerner (1994). Plants in saline environments. In: Pessarakli, M. (ed.), The handbook of plant and crop stress, pp. 65–96. Springer-Verlag, New York, USA.

    Google Scholar 

  • R.L.S. Ramos and A. Carvalho (1997). Shoot and root evaluations on seedlings from Coffea genotypes. Bragantia 56, 59–68.

    Article  Google Scholar 

  • R.A. Richards (1997). Defining selection criteria to improve yield under drought. In: Belhassen, E. (ed.), Drought tolerance in higher plants: Genetical, physiological and molecular biological analysis, pp.79–88. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • H.R. Rowse and A. Barnes (1979). Weather, rooting depth and water relations of broad beans—Atheoretical analysis. Agric Meteor 20, 381–391.

    Article  Google Scholar 

  • N.P. Saxena (1987). Screening for adaptation to drought : Case studies with chickpea and pigeonpea. In: Saxena N.P. and Johansen C. (eds.) Adaptation of chickpea and abiotic stresses. Proceedings of the consultants’ workshop. 19–21 Dec 1984. ICRISTAT Center, India. ICRISAT. pp. 63–76.

    Google Scholar 

  • N.P. Saxena (2003). Management of drought in chickpea- a holistic approach. In: Saxena, N.P. (ed.), Management of agricultural drought-agronomic and genetic options, pp. 103–122. Oxford & IBH Publishing Co. Pvt. Lid, New Delhi.

    Google Scholar 

  • R. Serraj, L. Krishnamurthy, J. Kashiwagi, J. Kumar, S. Chndra, and J.H. Crouch (2004). Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res 88, 115–127.

    Article  Google Scholar 

  • R.E. Sharp, W.K. Silk, and T.C. Hsiao (1988). Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth. Plant Physiol 87, 50–57.

    Article  CAS  PubMed  Google Scholar 

  • S.N. Silim, M.C. Saxena and W. Erskine (1993). Adaptation of lentil to the mediterranean environment. II. Response to moisture supply. Exp Agric 29, 21–28.

    Article  Google Scholar 

  • S.N. Silim and M.C. Saxena (1993a). Adaptation of spring-sown chickpea to the mediterranean basin. I. Response to moisture supply. Field Crops Res 34(2), 121–136.

    Article  Google Scholar 

  • S.N. Silim and M.C. Saxena (1993b). Adaptation of spring-snow chickpea to the mediterranean basin. II. Factors influencing yield under drought. Field Crops Res 34(2), 137–146.

    Article  Google Scholar 

  • J.B. Smithson, J.A. Thompson, and R.J. Summerfield (1985). Chickpea (Cicer Rietinum L.). In: Summerfield, R.J. and Roberts, E.H. (eds.), Grain legume crops, 312–390. William Collins Sons & Co. Ltd., London.

    Google Scholar 

  • B.N. Sponchiado, J.W. White, J.A. Castillo, and P.G. Jones (1989). Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agric 25, 249–257.

    Article  Google Scholar 

  • W.M. Steele, D.J. Allen, and R.J. Summerfield (1985). Cowpea (Vigna unguiculata (L.) Walp). In: Summerfield, R.J. and Robets, E.H. (eds.), Grain legume crops, pp. 520–583. William Coolins Sons & Co. Ltd., London.

    Google Scholar 

  • P.J. Stoffella, R.F. Sandsted, R.W. Zobel, and W.L. Hymes (1979). Root characteristics of black beans. II. Morphological differences among genotypes. Crop Sci 19, 826–830.

    Article  Google Scholar 

  • H.M. Taylor (1983). Managing root systems for efficient water use: An overview. In: Taylor, H.M., Jordan, W.R., and Sinclair, T.R. (eds.), Limitations to efficient water use in crop production, pp. 67–80. American Society of Agronomy, Madison, USA.

    Google Scholar 

  • H.M. Taylor and H.R. Gardner (1963). Penetration of cotton seedling taproots as influenced by bulk density, moisture content, and strength of soils. Soil Sci 96, 154–156.

    Google Scholar 

  • H.M. Taylor and L.F. Ratcliff (1969). Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci 108, 113–119.

    Article  Google Scholar 

  • S. Thomas, A. Fukai, and G.L. Hammer (1995). Growth and yield responses of barley and chickpea to water stress under three environments in South Queensland. II. Root growth and soil water extraction pattern. Aust J Agric Res 46, 17–33.

    Article  CAS  Google Scholar 

  • R.M.J. Thomas, S. Fukaic, and M.B. Peoples (2004). The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mungbean. Field Crops Res 86, 67–80.

    Article  Google Scholar 

  • A. Tilahun and S. Schubert (2003). Mechanisms of drought resistance in grain legumes. II. Stomatal regulation and root growth SINET. Ethiop J Sci 26, 137–144.

    Google Scholar 

  • H.D. Upadhyaya and R. Ortiz (2001). A mini-core subset for caturing diversty and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102, 1292–1298.

    Article  Google Scholar 

  • C. Vincent and P.J. Gregory (1986). Differences in growth and development of chickpea seedling roots (Cicer arietinum). Exp Agric 22, 233–242.

    Article  Google Scholar 

  • P. Weerathaworn, A. Soldati, and P. Stamp (1992). Root growth of tropical maize seedling at low water supply. In: Person, H. and Sobotiik, M., (eds.), Root ecology and its practical application, pp. 109–112. Verein für Wurzelforschung, Lagenfurt, Austria.

    Google Scholar 

  • P. Winter, T. Pfaff, S.M. Udupa, B. Hüttel, P.C. Sharma, S. Sahi, R. Arreguin-Espinoza, F. Weigand, F.J. Muehlbauer, and G. Kahl (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Geetet 262, 90–101.

    Article  CAS  Google Scholar 

  • A. Yamauchi, Y. Kono, and J. Tatsumi (1987). Comparison of root system structures of 13 species of cereals. Jpn J Crop Sci 56, 618–631.

    Google Scholar 

  • K. Yano, A. Yamauchi, and Y. Kono (1996b). Modification of root system morphology in a peanut seedling inoculated with arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. Jpn J Crop Sci 65, 361–367.

    Google Scholar 

  • S. Yu and D. Zhang (1979). Research on cultivation biology in faba bean. Jiangsu Agric Sci 6, 24–31.

    Google Scholar 

  • S. Yu and D. Zhang (1981). Research on cultivation biology in faba bean. Jiangsu Agric Sci 1, 30–35.

    Google Scholar 

  • R.W. Zobel (1992). Soil environmental constraints to root growth. In: Hatfield, J.L. and Steward, B.A. (eds.), Limtations to plant growth, pp. 27–51. Springer-Verlag, New York, USA.

    Google Scholar 

Download references

Acknowledgements

Dr. Magdi Abdelhamid, Lead Author, would like to express his gratitude to his colleagues at Department of Botany, National Research Centre, Egypt for their valuable contribution in some phases of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdi T. Abdelhamid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abdelhamid, M.T. (2010). Efficient Root System in Legume Crops to Stress Environments. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_13

Download citation

Publish with us

Policies and ethics