Skip to main content

Salinity and Drought Management in Legume Crops

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

The predicted global climatic changes anticipate rise in temperature, cyclones, floods, variability and unpredictability of rainfall, droughts, and melting of ice. Expected desiccation and rise in temperature will be resulting in high evapo-transpiration. The drier regions of the globe may become further drier. Consequently, it will become highly difficult for water scarce countries to face this challenge. Surface water scarcity will divert pressure on utilization of groundwater, the major part of which is not of safe and usable quality. Hence, soil and water salinity/ sodicty may enhance that will negatively affect soil characteristics (chemical and physical) and consequently reduce growth and yield of crops. Legumes are the most sensitive group in this regard and are expected to affect largely. Therefore, special management practices must be adopted to cope with the global climatic changes. Suitable hydraulic options (leaching and drainage), appropriate agronomic practices like; leveling, deep plowing, rainfall harvesting, application of organic matter, balanced nutrients, suitable sowing methods, mulching and planting geometry and appropriate irrigation technologies; scheduling, modification of irrigation system (shifting from surface irrigation to drip, sprinkler or sub-surface), cyclic use of good quality and brackish water have to be adopted. The changing situations will also require wise decisions like; selection of crop sequences that can withstand salinity stresses and inclusion of legumes in the crop rotations. Understanding of genetic variability with respect to salt tolerance will be necessary. Starting strong breeding programs to achieve this objective supported with modern approaches; Biotechnology, Mutation and Genetic Engineering will necessarily be desired from right now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

%:

Percent

<:

Lesser than

>:

More than

**:

Highly significant

al.:

Allies

B:

Boron

Ca:

Calcium

Ca(HCO3)2 :

Calcium bi carbonate

CaCO3 :

Calcium carbonate

CaSO4 :

Calcium sulphate

Cd:

Cadmium

CEC:

Cation exchange capacity

Cl:

Chloride

CO3 :

Carbonates

Cr:

Chromium

d Sm–1 :

Desi siemens per meter

Ddw:

Depth of drainage Water

Diw:

Depth of irrigation Water

ECdw :

Electrical conductivity of drainage water

ECiw :

Electrical conductivity of irrigation water

ECa:

EC threshold

ECe:

Electrical conductivity of saturated soil extract

ESP:

Exchangeable sodium percentage

FAO:

Food and agriculture organization

g L–1 :

Gram per liter

H2SO4 :

Sulphuric acid

ha:

Hectare

HCO3 :

Bicarbonate

K:

Potasium

Lab:

Laboratory

Li:

Lithium

LR:

Leaching requirement

mg L–1 :

Milligram per liter

Mg:

Magnesium

mm:

Millimeter

mmolcL–1 :

Millimole charge per liter

Na:

Sodium

NaCl:

Sodium chloride

P:

Phosphorus

Pb:

Lead

pH:

Negative log of hydrogen ion activity

PPM:

Parts per million

r:

Correlation coefficient

RSC:

Residual sodium carbonate

SAR:

Sodium adsorption ratio

SARiw :

Sodium adsorption ratio of irrigation water

Se:

Selenium

SO4 :

Sulphate

UNESCO:

United Nations Education, Social and Cultural Organization

μ S m–1 :

Micro siemens per meter

US:

United States

USA:

United States of America

X:

Clay exchange complex

Zn:

Zinc

References

  • H.H. Abdel-Wahab and H.H. Zahran (1981). Effects of salt stress on nitrogenase activity and growth of four legumes. Biol Plant (Prague) 23, 16–23.

    Google Scholar 

  • H.H. Abdel-Wahab and H.H. Zahran (1983). The effects of water stress on N2 (C2H2)-fixation and growth of Medicago sativa L. Acta Agron Acad Sci Hung 32, 114–118.

    Google Scholar 

  • K.V. Alia, S.K. Prasad, and P.P. Saradhi (1995). Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, 45–47.

    Article  CAS  Google Scholar 

  • N.S. Al-Wahaibi, N. Hussain, and S.A. Al-Rawahy (2007). Mulching for sustainable use of saline water to grow tomato in Sultanate of Oman. Sci Int 19(1), 79–81.

    Google Scholar 

  • Anonymous (2009). Managing climate variability. Climag January 2009, Australia.

    Google Scholar 

  • A.D. Ayers and D.L. Eberhard (1960). Response of edible broad bean to several levels of salinity. Agron J 52, 110–111.

    Article  Google Scholar 

  • R.S. Ayers and D.W. Westcot (1985). Water quality for agriculture. Irrigation and Drainage paper 29. FAQ, Rome.

    Google Scholar 

  • M. Benlloch-González, J. Fournier, J. Ramos, and M. Benlloch (2005). Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus. Plant Sci 168(3), 653–659.

    Article  Google Scholar 

  • L. Bernstein and A.D. Ayers (1949). Salt tolerance of cabbage and broccoli. United States Salinity Laboratory Report to Collaborators, Riverside, CA. 39 pp.

    Google Scholar 

  • M. Bino (2008). How can MENA countries resond to long term climate change impacts on water resources. Abstracts of The First International Conference: Water Resources and Climate Change in The MENA Region. 2–4 November 2008, Muscat, Sultanate of Oman. 10 pp.

    Google Scholar 

  • E. Brugnoli and M. Lauteri (1991). Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hisutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95, 628–635.

    Article  CAS  PubMed  Google Scholar 

  • A. Cerda, M. Caro, and F.G. Fernández (1982). Salt tolerance of two pea cultivars. Agron J 74, 796–798.

    Article  CAS  Google Scholar 

  • M.P. Cordovilla, F. Ligero, and C. Lluch (1994). The effect of salinity on N fixation and assimilation in Vicia faba. J Exp Bot 45, 1483–1488.

    Article  CAS  Google Scholar 

  • M.P. Cordovilla, F. Ligero, and C. Lluch (1995a). Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in faba bean (Vicia faba L.) under salt stress. Plant Soil 172, 289–297.

    Article  CAS  Google Scholar 

  • M.P. Cordovilla, A. Ocana, F. Ligero, and C. Lluch (1995b). Growth stage response to salinity in symbiosis Vicia faba-Rhizobium leguminosarum bv. viciae. Plant Physiol 14, 105–111.

    Google Scholar 

  • M.P. Cordovilla, A. Ocana, F. Ligero, and C. Lluch (1995c). Salinity effects on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J Plant Nutr 18, 1595–1609.

    Article  CAS  Google Scholar 

  • G.R. Cramer, A. Lauchli’, and V.S. Polito (1985). Displacement of Ca2+ by Na+ from the plasmalemma of root cells. Plant Physiol 79, 207–211.

    Article  CAS  PubMed  Google Scholar 

  • M.J. Delgado, F. Ligero, and C. Lluch (1994). Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26, 371–376.

    Article  CAS  Google Scholar 

  • R.P. Dhir (1977). Saline waters, their potential as a source of irrigation. Desertification and its control. Indian Council of Agricultural Research (ICAR), New Delhi, pp. 130–148.

    Google Scholar 

  • E.A. Elsheikh and E.M. Wood (1990). Effect of salinity on growth, nodulation and nitrogen yield of chickpea (Cicer arietinum L). J Exp Bot 41, 1263–1269.

    Article  CAS  Google Scholar 

  • E.A. Elsheikh and E.M. Wood (1995). Nodulation and N2 fixation by soybean inoculated with salt-tolerant Rhizobia or salt sensitive Bradyrhizobia in saline soil. Soil Biol Biochem 27, 657–661.

    Article  CAS  Google Scholar 

  • FAO (1992). The use of saline waters for crop production. FAO irrigation and drainage paper 48, 6 pp.

    Google Scholar 

  • C.W. Fagg and J.L. Stewart (1994). The value of Acacia and Prosopis in arid and semi-arid environments. J Arid Environ 27, 3–25.

    Article  Google Scholar 

  • R.G. Ferreira, F.J. Tavora, and F.F. Hernandez (2001). Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions. Pesqui Agropecu Bras 36, 79–88.

    Google Scholar 

  • T.J. Flowers (2004). Improving crop salt tolerance. J Exp Bot 55, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • H. Ghadiri, I. Dordipour, M. Bybordi, and M.J. Malakourti (2005). Potential use of Capsiansea for supplementary irrigation in North Iran. Agric Water Manage 79, 209–224.

    Article  Google Scholar 

  • A. Ghafoor, M. Qadir, and G. Murtaza (2004). Salt affected soils: Principles of management. Institute of soil and environmental sciences, University of Agriculture Faisalabad. pp. 183–215.

    Google Scholar 

  • H. Greenway and R. Munns (1980). Mechanisms of salt tolerance of the cultivated tomato responses of Lycopersicon esculentum, non-halophytes. Annu Rev Plant Physiol 31, 149–190.

    Article  CAS  Google Scholar 

  • S.K. Gupta and S.K. Sharma (1990). Response of crops to high ESP. Irrig Sci 11, 173–179.

    Article  Google Scholar 

  • H. Hayashi and N. Murata (1998). Genetically engineered enhancement of salt tolerance in higher plants. In: Sato Murata N., (ed.), Stress response of photosynthetic organisms: Molecular mechanisms and molecular regulation, pp. 133–148. Elsevier, Amsterdam.

    Google Scholar 

  • G.J. Hoffman and S.L. Rawlins (1970). Design and performance of sunlit climate chambers. Trans ASAE 13, 656–660.

    Google Scholar 

  • N. Hussain, N.S. Al-Wahaibi, S.S.A. Habsi, and A. Al-Bakri (2006). Hydro-economical localization of Oman agriculture. Proceedings of the International Conference on Economic Incentives and Demand Management. 18–22 March 2006, Muscat, Oman, pp. 188–197.

    Google Scholar 

  • N. Hussain, G. Hassan, M. Arshadullah, A.G. Tahir, A.R. Naseem, and G.D. Khan (1998). Bio-Amelioration of Sandy Clay Loam Saline Sodic Soil. Drainage in the 21st Century Food Productions and Environment Proceedings of the Seventh International Drainage Symposium Florida, vef (En) 8–10 March 1998. pp. 293–300.

    Google Scholar 

  • N. Hussain, G.D. Khan, S.M. Mehdi, G. Sarwar, M.S. Dogar, and T. Hussain (1995). Use of brackish water for sustained crop production. Proceedings of the Fifth International Micro Irrigation Congress 2–6 April 1995, Orlando, FL, pp. 129–134.

    Google Scholar 

  • N. Hussain, F. Mujeeb, G. Sarwar, G. Hussan, and M.K. Ullah (2002a) Soil salinity/sodicity and groundwater quality changes in relation to rainfall and reclamation activities. Proceedings of the International Workshop on Conjunctive Water Management for Sustainable Irrigated Agriculture in South Asia, 16–17 April 2002, Islamabad. pp. 91–99.

    Google Scholar 

  • N. Hussain, G. Sarwar, M.A. Zaka, M. Tahir, and F. Mujeeb (2002b) Strategies for alleviation of harmful effects of brackish water. Proceedings of the Second South Asia Water Forum 14–16 December 2002, Islamabad, vol. 2, pp. 631–641.

    Google Scholar 

  • IPCC (InterGovermental Panel on Climate Change) (2007). Climate Change 2007: Impacts, adaptation and vulnerability. In: M. Parry, O. Canziani, J. Palutikof, P. van der Linden, C. Hanson (eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 978-0-521-88010-7.

    Google Scholar 

  • B.L. Jain (1981). Salt balance studies in saline water irrigated soils. J Ind Soc Soil Sci 29, 160–166.

    CAS  Google Scholar 

  • B.A. Keating and M.J. Fisher (1985). Comparative tolerance of tropical grain legumes to salinity. Aust J Agric Res 36, 373–383.

    Article  CAS  Google Scholar 

  • M.A. Khan (2001). Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot 70, 259–268.

    Article  Google Scholar 

  • J. Levitt (1972). Responses of plants to environmental stresses. Academic Press, New York, 697 pp.

    Google Scholar 

  • E.V. Maas (1990). Crop salt tolerance. In: K.K. Tanji (ed.), Agriculture salinity assessment and management, pp. 262–304. ASCE Manuals, New York.

    Google Scholar 

  • E.V. Maas and G.J. Hoffman (1977). Crop salt tolerance – Current assessment. J Irrig Drain Div ASCE 103(IR2), 115–134.

    Google Scholar 

  • M.F.A. Maliro, D. McNeil, J. Kollmorgen, C. Pittock, and B. Redden (2007). Screening chickpea (Cicer arietinum L.) and wild relatives germplasm from diverse country sources for salt tolerance. Genet Resour Crop Evol 55(1), 53–63.

    Article  Google Scholar 

  • H.R. Manchanda and S.K. Sharma (1989). Tolerance of chloride and sulphate salinity in chickpea (Cicer arietinum). J Agric Sci 113, 407–410.

    Article  Google Scholar 

  • L. Meher, R. Armostrong, and D. Conner (2003). Salt tolerant lentils – A possibility for future? Proceedings of the Australian Society of Agronomy 11th Conference 2003. Solution for a better environment. http://www.regional.org.au/au/asa/2003.

  • R. Munus (2002). Comparative physiology of salt and water stress. Plant Cell Environ 25, 230–250.

    Google Scholar 

  • R.H. Nieman and L. Bernstein (1959). Interactive effects of gibberellic acid and salinity on the growth of beans. Am J Bot 46, 667–670.

    Article  CAS  Google Scholar 

  • L.R. Oldeman, T.A. HakkelIng, and W.G. Sombroek (1991). World map of the status of human-induced soil degradation. An explanatory note, 2nd rev. ed. International Soil Reference and Information Center (ISRIC), Wageningen, 35 pp.

    Google Scholar 

  • T. Osawa (1965). Studies on the salt tolerance of vegetable crops with special reference to mineral nutrition. Bull Univ Osaka Prefect, Ser B, Osaka, Jap 16, 13–57.

    CAS  Google Scholar 

  • S.K. Parida and A.B. Das (2005). Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf 60(3), 324–349.

    Article  CAS  PubMed  Google Scholar 

  • A.K. Parida, A.B. Das, and B. Mittra (2004). Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees Struct Funct 18, 167–174.

    Article  CAS  Google Scholar 

  • M. Qadir, A. Ghafoor, and G. Murtaza (2001). Use of saline sodic water through phytomediation of calcareous saline sodic soils. Agric Water Manage 1647, 1–14.

    Google Scholar 

  • G.H. Rabie, M.B. Aboul–Nasr, and A. Al-Humiany (2005). Increasing salinity tolerance of cowpea plants by dual inoculation of Am fungus Glomus clarum and Nitrogen-fixer Azospirillum brasilense. Mycobiology 33(1), 51–61.

    Article  CAS  Google Scholar 

  • G.H. Rabie and A.M. Almadini (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotech 4(3), 210–222.

    CAS  Google Scholar 

  • M.A. Rahman (2008). Nitrogen fixation in salt affected soils by legumes. M.Sc. Thesis. Department of Soil and Environmental Science, University of Agriculture, Faisalabad.

    Google Scholar 

  • P.C. Ram, O.P. Garg, B.B. Singh, and B.R. Maurya (1989). Effect of salt stress on nodulation fixed nitrogen partitioning and yield attributes in chickpea (Cicer arietinum L.). Indian J Plant Physiol 32, 115–121.

    Google Scholar 

  • P. Ramoliya, H. Patel, and A.N. Pandey (2004). Effect of salinization of soil on growth and macro-and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). Forest Ecol Manage 202(1–3), 181–193.

    Article  Google Scholar 

  • A.V. Rao and R. Tak (2002). Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) fungi in India arid zone. J Arid Environ 51, 113–119.

    Article  Google Scholar 

  • S. Ravikovitch and A. Porath (1967). The effect of nutrients on the salt tolerance of crops. Plant Soil 26, 49–71.

    Article  CAS  Google Scholar 

  • M. Sadiq, G. Hassan, S.M. Mehdi, N. Hussain, and M. Jamil (2007). Amelioration of saline-sodic soils with tillage implements and sulfuric acid application. Pedosphere 17(2), 182–190.

    Article  CAS  Google Scholar 

  • F.J. Sanchez, M. Manzanares, E.F. De Andres, J.L. Tenorio, and L. Ayerbe (1998). Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res 59, 225–235.

    Article  Google Scholar 

  • M.J. Sánchez-Blanco, T.M. Ferrández, A. Morales, A. Morte, and J. José (2004). Variations in water status, gas exchange and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161(6), 675–682.

    Article  PubMed  Google Scholar 

  • R. Serraz, H. VasquezDiaz, G. Hernandez, and J.J. Drevon (2001). Genotypic difference in the short-term response of nitrogenase activity (C2H2 reduction) to salinity and oxygen in the common bean. Agronomie 21, 645–651.

    Article  Google Scholar 

  • Soil Science Society of America (SSA) (2008). Glossary of Soil Science Terms (https://http://www.soils.org/sssagloss/https://www.soils.org/sssagloss/).

  • M. Soussi, C. Lluch, and A. Ocana (1999). Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Ciser arietinum L.) cultivars under salt stress. J Exp Bot 50, 1701–1708.

    Article  CAS  Google Scholar 

  • R.L. Tate (1995). Soil Microbiology (symbiotic nitrogen fixation). John Wiley & Sons, Inc., New York, pp. 307–333.

    Google Scholar 

  • E. Tee, D. Burrows, A.M. Boland, and S. Putland (2003). Best Irrigation management practices for Viticulture in the Murray Darling Basin. Cooperative Research Centre for Viticulture, Adelaide.

    Google Scholar 

  • US Salinity Laboratory Staff (1954). Diagnosis and improvement of saline and alkali soils. USDA Hand Book 60. Washington, DC.

    Google Scholar 

  • M.T. Van Genuchten and G.J. Hoffman (1984). Analysis of crop salt tolerance data. In: Shainberg I., Shalhevet J. (eds.), Soil salinity under irrigation – Process and management ecological studies, vol. 51, pp. 258–271. Springer-Verlag, New York.

    Google Scholar 

  • G.E. Welbaum, T. Tissaoui, and K.J. Bradford (1990). Water relations of seed development and germination in muskmelon. Aust J Plant Physiol 10, 109–117.

    Google Scholar 

  • A.M. Yano-Melo, O.J. Saggin, and L.C. Maia (2003). Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95(1), 343–348.

    Article  Google Scholar 

  • A. Yeo (1999). Prediction of the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78, 159–174.

    Article  CAS  Google Scholar 

  • Y. Yoshiba, T. Kiyosue, K. Nakashima, and K. Yamaguchi-shinozaki (1997). Regulation of levels of prolineas an osmolyte in plants under water stress. Plant Cell Physiol 38, 1095–1102.

    CAS  PubMed  Google Scholar 

  • R.B. Zandavalli, L.R. Dillenburg, and V.D. Paulo (2004). Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl Soil Ecol 25(3), 245–255.

    Article  Google Scholar 

  • X.P. Zhang, M. Karsisto, R. Harper, and K. Lindstrom (1991). Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41, 104–113.

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this chapter duly acknowledge Soil Salinity Research Institute, Pindi Bhattian, Pakistan, Agricultural Research Center, Ministry of Agriculture, Sultanate of Oman, FAO, Ghafoor and coauthors, Qureshishi and Barrett-Lennard, US Salinity Lab. Staff, Maas, E. V., Gupta and Sharma, and Arshad and his coauthors for using their data or classification system in this chapter. Special acknowledgement is to Hussain and coauthors for providing their data that were made as the major part of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazir Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hussain, N., Sarwar, G., Schmeisky, H., Al-Rawahy, S., Ahmad, M. (2010). Salinity and Drought Management in Legume Crops. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_10

Download citation

Publish with us

Policies and ethics