Skip to main content

Climate Change, a Challenge for Cool Season Grain Legume Crop Production

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

Dry pea, chickpea, broad bean, lentil, lupines, grass pea and common vetch are the major cool season grain legume crops produced worldwide, the first four of which are primarily for human consumption. These crops are grown and utilized in over 100 countries, across all continents except Antarctica. In particular, dry pea, chickpea and lentil are a major protein source in the diet of the populations of South Asia. In relation to this, India, Pakistan and Bangladesh are major producers and importers of these crops, with Canada, France, the USA, Australia and Turkey the major export countries. It is estimated that the population of South Asia will increase by 700 million people by 2035 and demand for cool season grain legumes will increase by 30% during this period. Climate models predict increased atmospheric CO2 concentrations, increasing global temperatures, modified rainfall patterns and increased frequency of extreme weather events over the next 100 years. Overall, these climate changes are predicted to result in increased yields in developed countries at mid and high-mid-latitudes (e.g. Canada, the USA and France) but decreased yields in developing countries in the tropics and sub-tropics (e.g. India, Pakistan, Bangladesh and Ethiopia). The negative effects of climate change on cool season grain legume production in these latter countries can be mediated by adaptation strategies, such as crop relocation, changes in sowing date, development of stress tolerant varieties and increased nutrient and plant protection inputs. For any remaining production deficit, developed countries such as Canada, the USA and France, have established growing and export infrastructures for these crops, and could increase outputs in response to increased demand. This book assesses the changes expected to occur in the production, sustainability and trade of cool season grain legume crops under future climate and socio-economic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.K. Aggarwal, P.K. Joshi, J.S.I. Ingram, and R.K. Gupta (2004). Adapting food systems of the Indo-Gangetic plains to global environmental change: Key information needs to improve policy formulation. Environ Sci Policy 7, 487–498.

    Article  Google Scholar 

  • E.A. Ainsworth, C. Beier, C. Calfapietra, R. Ceulemans, M. Durand-Tardif, G.D. Farquhar, D.L. Godbold, G.R. Hendrey, T. Hickler, J. Kaduk, D.F. Karnosky, B.A. Kimball, C. Körner, M. Koornneef, T. Lafarge, A.D.B. Leakey, K.F. Lewin, S.P. Long, R. Manderscheid, D.L. McNeil, T.A. Mies, F. Miglietta, J.A. Morgan, J. Nagy, R.J. Norby, R.M. Norton, K.E. Percy, A. Rogers, J.-F. Soussana, M. Stitt, H.-J. Weigel, and J.W. White (2008a). Next generation of elevated CO2 experiments with crops: A critical investment for feeding the future world. Plant Cell Environ 31, 1317–1324.

    Article  CAS  PubMed  Google Scholar 

  • E.A. Ainsworth, A.D.B. Leakey, D.R. Ort, and S.P. Long (2008b). FACE-ing the facts: Inconsistencies and interdependence among field, chamber and modelling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179, 5–9.

    Article  CAS  PubMed  Google Scholar 

  • M. Andrews, P.J. Lea, J.A. Raven, and R.A. Azevedo (2009). Nitrogen use efficiency. 3. Nitrogen fixation. Genes and costs. Ann Appl Biol 155, 1–13.

    Article  CAS  Google Scholar 

  • M. Andrews, H. Seddighi, S. Hodge, B.A. McKenzie, and S.S. Yadav (2010). Consequences of predicted climatic changes on international trade in cool season grain legume crops. In: Yadav S.S., McNeil D.L., Redden R. (eds.), Climate change and management of cool season grain legume crops. Springer, Heidelberg/New York.

    Google Scholar 

  • M. Andrews and D. Watson (2010). Carbon sequestration. In: Cohen N. (ed.), Green business. Sage Publications, Thousand Oaks, CA/London in press.

    Google Scholar 

  • Australian Government Bureau of Meteorology (2009). Climate change. http://www.bom.gov.au/ accessed August 2009.

  • A.J. Challinor and T.R. Wheeler (2008). Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agric Forest Meteorol 148, 1062–1077.

    Article  Google Scholar 

  • D. Eamus (1991). The interaction of rising CO2 and temperature with water use efficiency. Plant Cell Environ 14, 843–852.

    Article  Google Scholar 

  • Earth System Research Laboratory (2009). http://www.esrl.nona.gov/ accessed August 2009.

  • FAOSTAT (2009). Food and Agriculture Organisation of the United Nations Rome. http://faostat.fao.org/ accessed August 2009.

  • P.M. Fearnside and W.F. Laurance (2004). Tropical deforestation and greenhouse-gas emissions. Ecol Appl 14, 982–986.

    Article  Google Scholar 

  • D.H. Fleisher, D.J. Timlin, and V.R. Reddy (2008). Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use and productivity. Agric Forest Meteorol 148, 1109–1122.

    Article  Google Scholar 

  • B.A. Hungate, J.S. Dukes, M.R. Shaw, Y.Q. Luo, and C.B. Field (2003). Nitrogen and climate change. Science 302, 1512–1513.

    Article  CAS  PubMed  Google Scholar 

  • 15. IPCC (Intergovernmental Panel on Climate Change) (1996). Climate change 1995: Impacts adaptations and mitigation of climate change: Scientific-technical analyses contribution of working group II to the second assessment report of its intergovernmental panel on climate change. In: Watson R.T., Zinyowera M.C., Moss R.H. (eds.), Cambridge University Press, Cambridge/New York.

    Google Scholar 

  • IPCC (InterGovermental Panel on Climate Change) (2007a). Summary for policymakers. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., and Miller H.L. (eds.), Climate change 2007: The Physical Science basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007b) Climate change 2007: Synthesis report.http://www.ipcc-data.org. Retrieved June 2009.

  • B.A. Kimball, K. Kobayashi, and M. Bindi (2002). Responses of agricultural crops to free air CO2 enrichment. Adv Agron 77, 293–368.

    Article  Google Scholar 

  • E.J. Knights, N. Açikgöz, T. Warkentin, G. Bejiga, S.S. Yadav, and J.S. Sandhu (2007). Area, production and distribution. In: Yadav S.S., Redden R.J., Chen W., Sharma B. (eds.), Chickpea breeding and management. CAB International, Wallingford.

    Google Scholar 

  • N. Mantri, E.C.K. Pang, and R. Ford (2010). Molecular biology for stress management. In: Yadav S.S., McNeil D.L., Redden R. (eds.), Climate change and management of cool season grain legume crops. Springer, Heidelberg/New York.

    Google Scholar 

  • B.A. McKenzie and M. Andrews (2010). Modelling climate change effects on cool season grain legume crop production: LENMOD, a case study. In: Yadav S.S., McNeil D.L., Redden R. (eds.), Climate change and management of cool season grain legume crops. Springer, Heidelberg/New York.

    Google Scholar 

  • G.A. Meehl, T. Karl, D.R. Easterling, S. Changnon, R. Pielke, Jr., D. Changnon, J. Evans, P.Y. Groisman, T.R. Knutson, K.E. Kunkel, L.O. Mearns, C. Parmesan, R. Pulwarty, T. Root, R.T. Sylves, P. Whetton, and F. Zwiers (2000). An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81, 413–416.

    Article  Google Scholar 

  • J.L. Monteith (1981). Coupling of plants to the atmosphere. In: Grace J., Ford E.D., Jarvis P.G. (eds.), Plants and their atmospheric environment. Blackwell, London.

    Google Scholar 

  • Netherlands Environmental Assessment Agency (2009). http://www.pbl.nl/ accessed August 2009.

  • J.E. Oleson and M. Bindi (2002). Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16, 239–262.

    Article  Google Scholar 

  • M.L. Parry, C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14, 53–67.

    Article  Google Scholar 

  • M. Parry, C. Rosenzweig, and M. Livermore (2005). Climate change, global food supply and risk of hunger. Phil Trans R Soc B 360, 2125–2138.

    Article  PubMed  Google Scholar 

  • H. Poorter and O. Nagel (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Aust J Plant Physiol 27, 595–607.

    Article  CAS  Google Scholar 

  • R. Rabah Nasser, M.P. Fuller, and A.J. Jellings (2008a). Effect of elevated CO2 and nitrogen levels on lentil growth and nodulation. Agron Sust Dev 28, 175–180.

    Article  Google Scholar 

  • R. Rabah Nasser, M.P. Fuller, and A.J. Jellings (2008b). The influence of elevated CO2 and drought on the growth and nodulation of lentils (Lens culinaris Medic). Asp Appl Biol 88, 103–110.

    Google Scholar 

  • J.-F. Soussana and A. Lüscher (2007). Temperate grasslands and atmospheric change: A review. Grass Forage Sci 62, 127–134.

    Article  CAS  Google Scholar 

  • I. Stulen, J. den Hertog, F. Fonseca, K. Steg, F. Posthumus, and T.A.W. van der Kooij (1998). Impact of elevated atmospheric CO2 on plants. In: de Kok L.J., Stulen I. (eds.), Responses of plant metabolism to air pollution and global change. Backhuys Publishers, Leiden.

    Google Scholar 

  • United Nations Framework Convention on Climate Change (2009). http://unf.ccc.int/ accessed August 2009.

  • United Nations Population Division (2009). http://www.un.org/esa/population/unpop/ accessed August 2009.

  • K.-J. Van Groenigen, J. Six, B.A. Hungate, M.-A. De-Graaff, N. Van Breemen, and C. Van Kessel (2006). Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103, 6571–6574.

    Article  PubMed  Google Scholar 

  • G. Wieser, R. Manderscheid, M. Erbs, and H.-J. Weigel (2008). Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. J Agr Food Chem 56, 6531–6535.

    Article  CAS  Google Scholar 

  • Yadav S.S., McNeil D.L., Stevenson P.C. (eds.) (2007a). Lentil: An ancient crop for modern times. Springer, Dordrecht.

    Google Scholar 

  • Yadav S.S., Redden R.J., Chen W., Sharma B. (eds.) (2007b). Chickpea breeding and management. CAB International, Wallingford.

    Google Scholar 

  • T. Yano, M. Aydin, and T. Haraguchi (2007). Import of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors 7, 2297–2315.

    Article  Google Scholar 

  • S. Zanetti, U.A. Hartwig, A. Lüscher, T. Hebeisen, M. Frehner, B.U. Fischer, G.R. Hendrey, H. Blum, and J. Nösberger (1996). Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112, 575–583.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Andrews, M., Hodge, S. (2010). Climate Change, a Challenge for Cool Season Grain Legume Crop Production. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_1

Download citation

Publish with us

Policies and ethics