Skip to main content

Spatio-Temporal Modelling of Intracellular Signalling Pathways: Transcription Factors, Negative Feedback Systems and Oscillations

  • Chapter
New Challenges for Cancer Systems Biomedicine

Part of the book series: SIMAI Springer Series ((SEMA SIMAI))

Abstract

There are many intracellular signalling pathways where the spatial distribution of the molecular species cannot be neglected. One such class of pathways is those involving transcription factors (e.g. Hes 1, p53-Mdm2, NF-κ B, heat-shock proteins) which often exhibit oscillations in both space and time. In this chapter we present a partial differential equation model of the transcription factor, Hes 1. Our model considers the dynamics of Hes 1 in a 2-dimensional cellular domain including a nucleus, cytoplasm and microtubule-organising centre (MTOC). Spatial movement of the molecules (protein, mRNA) is assumed to be by diffusion, and also convection along microtubules. Through numerical simulations we find ranges of values for the model parameters such that sustained oscillatory dynamics occur, consistent with available experimental measurements. In order to bridge the gap between in vivo and in silico experiments we investigate more realistic cell geometries by using an imported image of a real cell as our computational domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, S., Archer, C., Schaffer, D.: Computational models of the notch network elucidate mechanisms of context-dependent signaling. PLoS Comput. Biol. 5, el000, 390 (2009)

    Google Scholar 

  2. Bancaud, A., Huet, S., Daigle, N., Mozziconacci, J., Beaudouin, J., Ellenberg, J.: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. The EMBO Journal 28, 3785-3798 (2009)

    Article  Google Scholar 

  3. Barik, D., Baumann, W.T., Paul, M.R., Novak, B., Tyson, J.J.: A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Sys. Biol. 6, 405 (20l0)

    Google Scholar 

  4. Barik, D., Paul, M.R., Baumann, W.T., Cao, Y., Tyson, J.J.: Stochastic simulation of enzyme- catalyzed reactions with disparate timescales. Biophys. J. 95, 3563-3574 (2008)

    Article  Google Scholar 

  5. Barrio, M., Burrage, K., Leier, A., Tian, T.: Oscillatory regulation of Hesl: Discrete stochastic delay modelling and simulation. PLoS ONE 2, ell7 (2006)

    Google Scholar 

  6. Beck, M., Forster, F., Ecke, M., Plitzko, J.M., Melchoir, F., Gerisch, G., Baumeister, W., Medalia, O.: Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387-1390(2004)

    Article  Google Scholar 

  7. Bernard, S., Cajavec, B., Pujo-Menjouet, L., Mackey, M., Herzel, H.: Modelling transcriptional feedback loops: the role of Gro/TLEl in Hesl oscillations. Phil. Trans. Roy. Soc. A 364, 1155-1170 (2006)

    Article  MATH  Google Scholar 

  8. Cangiani, A., Natalini, R.: A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theor. Biol. 267, 614-625 (2010)

    Article  MathSciNet  Google Scholar 

  9. Carbonaro, M., O'Brate, A., Giannakakou, P.: Microtubule disruption targets HIF-1« mRNA to cytoplasmic P-bodies for translation repression. J. Cell. Biol. 192, 83-99 (2011)

    Article  Google Scholar 

  10. Caspi, A., Granek, R., Elbaum, M.: Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85, 5655-5658 (2000)

    Article  Google Scholar 

  11. Cole, N., Lippincott-Schwartz, J.: Organization of organelles and membrane traffic by microtubules. Curr. Opin. Cell Biol. 7, 55-64 (1995)

    Article  Google Scholar 

  12. Cole, C., Scarcelli, J.: Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell Biol. 18, 299-306 (2006)

    Article  Google Scholar 

  13. Davidson, M.W.: Micromagnet website. URL http://micro.magnet.fsu.edu/primer/techniques/fluorescence/gallery/cells/u2/u2cellslarge8.html. Accessed 26th April 2012

  14. Feldherr, C., Akin, D.: Signal-mediated nuclear transport in proliferating and growth-arrested BALB/c 3T3 cells. J. Cell. Biol. 115, 933-939 (1991)

    Article  Google Scholar 

  15. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U.: Oscillations and variability in the p53 system. Mol. Syst. Biol. 2, E1-E13 (2006)

    Article  Google Scholar 

  16. Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R.: Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840-843 (2002)

    Article  Google Scholar 

  17. Johansson, T., Lejonklou, M., Ekeblad, S., Stälberg, P., Skogseid, B.: Lack of nuclear expression of hairy and enhancer of split-1 (HES1) in pancreatic endocrine tumors. Horm. Metab. Res. 40, 354-359 (2008)

    Article  Google Scholar 

  18. Jordan, M.A., Wilson, L.: Microtubules as a target for anticancer drugs. Nature Rev. Cancer 4, 253-265 (2004)

    Article  Google Scholar 

  19. Kar, S., Baumann, W.T., Paul, M.R., Tyson, J.J.: Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 106, 6471-6476 (2009)

    Article  Google Scholar 

  20. Karin, M., Cao, Y., Greten, F., Li, Z.: Nf-kappab in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2(4), 301-310 (2002)

    Article  Google Scholar 

  21. Kavallaris, M.: Microtubules and resistance to tubulin-binding agents. Nature Rev. Cancer 10, 194-204(2010)

    Article  Google Scholar 

  22. Kim, I., Kim, D., Han, S., Chin, M., Nam, H., Cho, H., Choi, S., Song, B., Kim, E., Bae, Y., Moon, Y.: Truncated form of importin alpha identified in breast cancer cells inhibits nuclear import of p53. J. Biol. Chem 275, 23139-23145 (2000)

    Article  Google Scholar 

  23. Klonis, N., Rug, M., Harper, I., Wickham, M., Cowman, A., Tilley, L.: Fluorescence photo- bleaching analysis for the study of cellular dynamics. Eur. Biophys. J. 31, 36-51 (2002)

    Article  Google Scholar 

  24. Lane, D.: p53, guardian of the genome. Nature 358, 15-16 (1992)

    Article  Google Scholar 

  25. Lewis, J.: Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398-1408 (2003)

    Article  Google Scholar 

  26. Lomakin, A., Nadezhdina, E.: Dynamics of nonmembranous cell components: Role of active transport along microtubules. Biochemistry (Moscow) 75(1), 7-18 (2010)

    Google Scholar 

  27. Marfori, M., Mynott, A., Ellis, J.J., Mehdi, A.M., Saunders, N.F.W., Curmi, P.M., Forwood, J.K., Boden, M., Kobe, B.: Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta Mol. Cell Res. 1813(9), 1562-1577 (2011)

    Article  Google Scholar 

  28. Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Oka- mura, H., Kageyama, R.: Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl. Acad. Sci. USA 103, 1313-1318(2006)

    Article  Google Scholar 

  29. Matsuda, T., Miyawaki, A., Nagai, T.: Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nature Meth. 5, 339-345 (2008)

    Google Scholar 

  30. Mendez, V., Fedotov, S., Horsthemke, W.: Reaction-Transport Systems. Springer (2010)

    Google Scholar 

  31. Meyers, J., Craig, J., Odde, D.: Potential for control of signaling pathways via cell size and shape. Curr. Biol. 16, 1685-1693 (2006)

    Article  Google Scholar 

  32. Momiji, H., Monk, N.: Dissecting the dynamics of the Hes1 genetic oscillator. J. Theor. Biol. 254, 784-798 (2008)

    Article  Google Scholar 

  33. Monk, N.: Oscillatory expression of Hes1, p53, and NF-kB driven by transcriptional time delays. Curr. Biol. 13, 1409-1413 (2003)

    Article  Google Scholar 

  34. Muller, M., Klumpp, S., Lipowsky, R.: Tug-of-war as a cooperative mechanism for bidirectional cargo transport of molecular motors. Proc. Natl. Acad. Sci. USA 105,4609-4614 (2008)

    Article  Google Scholar 

  35. Nelson, D., Ihekwaba, A., Elliott, M., Johnson, J., Gibney, C., Foreman, B., Nelson, G., See, V., Horton, C., Spiller, D., Edwards, S., McDowell, H., Unitt, J., Sullivan, E., Grimley, R., Benson, N., Broomhead, D., Kell, D., White, M.: Oscillations in NF-kB signaling control the dynamics of gene expression. Science 306, 704-708 (2004)

    Article  Google Scholar 

  36. Neves, S., Tsokas, P., Sarkar, A., Grace, E., Rangamani, P., Taubenfeld, S., Alberini, C., Schaff, J., Blitzer, R., Moraru, I., Iyengar, R.: Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133, 666-680 (2008)

    Article  Google Scholar 

  37. Norvell, A., Debec, A., Finch, D., Gibson, L., Thoma, B.: Squid is required for efficient posterior localization of oskar mRNA during drosophila oogenesis. Dev. Genes Evol. 215, 340-349 (2005)

    Article  Google Scholar 

  38. Perkins, N.: Integrating cell-signalling pathways with NF-kB and IKK function. Nature Rev. Mol. Cell Biol. 8, 49-62 (2007)

    Article  Google Scholar 

  39. Pommier, Y., Sordet, O., Antony, S., Hayward, R., Kohn, K.: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23, 2934-2949 (2004)

    Article  Google Scholar 

  40. Puszynski, K., Bertolusso, R., Lipniacki, T.: Crosstalk between p53 and NF-kB systems: pro- and anti-apoptotic functions of NF-kB. IET Sys. Biol. 3, 356-367 (2009)

    Article  Google Scholar 

  41. Rodriguez, M.S., Dargemont, C., Stutz, F.: Nuclear export of RNA. Biol. Cell 96, 639-655 (2004)

    Article  Google Scholar 

  42. Sang, L., Coller, H., Roberts, J.: Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321, 1095-1100(2008)

    Article  Google Scholar 

  43. Seksek, O., Biwersi, J., Verkman, A.: Translational diffusion ofmacromolecule-sized solutes in cytoplasm and nucleus. J. Cell. Biol. 138, 131-142 (1997)

    Article  Google Scholar 

  44. Shahrezaei, V., Swain, P.: The stochastic nature of biochemical networks. Curr. Opin. Biotech- nol. 19, 369-374 (2008)

    Article  Google Scholar 

  45. Shankaran, H., Ippolito, D., Chrisler, W., Resat, H., Bollinger, N., Opresko, L., Wiley, H.: Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol. Syst. Biol. 5(322) (2009)

    Google Scholar 

  46. Smith, D., Simmons, R.: Model of motor-assisted transport of intracelullar particules. Biophys. J. 80,45-68(2001)

    Article  Google Scholar 

  47. Sturrock, M., Terry, A., Xirodimas, D., Thompson, A., Chaplain, M.: Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol. 273, 15-31 (2011)

    Article  MathSciNet  Google Scholar 

  48. Sturrock, M., Terry, A., Xirodimas, D., Thompson, A., Chaplain, M.: Influence of the nuclear membrane, active transport and cell shape: Insights for spatio-temporal modelling. Bull. Math. Biol. pp. DOI 10.1007/s11,538-012-9725-1 (2012)

    Google Scholar 

  49. Terry, A., Chaplain, M.: Spatio-temporal modelling oftheNF-^B intracellular signalling pathway: The roles of diffusion, active transport, and cell geometry. J. Theor. Biol. 290, 7-26 (2011)

    Article  Google Scholar 

  50. Terry, A., Sturrock, M., Dale, J., Maroto, M., Chaplain, M.: A spatio-temporal model ofNotch signalling in the zebrafish segmentation clock: Conditions for synchronised oscillatory dynamics. PLoS ONE 6, e16,980 (2011)

    Article  Google Scholar 

  51. Wachsmuth, M., Waldeck, W., Langowski, J.: Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spec- troscopy. J. Mol. Biol. 298, 677-689 (2000)

    Article  Google Scholar 

  52. Weis, K.: Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441-451 (2003)

    Article  Google Scholar 

  53. Weiss, M., Hashimoto, H.,Nilsson, T.: Anomalous protein diffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87, 3518-3524 (2004)

    Article  Google Scholar 

  54. Zhang, P., Yang, Y., Zweidler-McKay, P.A., Hughes, D.: Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin. Cancer Res. 14, 2962-2969 (2008)

    Article  Google Scholar 

  55. van Zon, J., Morelli, M., Tanase-Nicola, S., ten Wolde, P.: Diffusion of transcription factors can drastically enhance the noise in gene expression. Biophys. J. 91, 4350-4367 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the ERC Advanced Investigator Grant 2276l9, “M5CGS - From Mutations to Metastases: Multiscale Mathematical Modelling of Cancer Growth and Spread”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. J. Chaplain .

Editor information

Editors and Affiliations

Non-dimensionalisation of Hes1 model

Non-dimensionalisation of Hes1 model

We summarise our non-dimensionalisation of the extended Hesl model (described in Sect. 2.2). The original Hesl model (described in Sect. 2.l above) is non-dimensiona- lised in a similar way - for details, see [47].

To non-dimensionalise the extended Hesl model given by Eqs. (1)-4 and (15), subject to the conditions in Eqs. 8-(14), we first define re-scaled variables by dividing each variable by a reference value. Re-scaled variables are given overlines to distinguish them from variables that are not re-scaled. Thus we can write:where the right hand side of each equation is a dimensional variable divided by its reference value. From Eq. (19), we can write variables in terms of re-scaled variables and then substitute these expressions into Eqs. (1)-4 and (14), and into the conditions in Eqs. 8-(14). This gives a model defined in terms of re-scaled variables which has the same form as the dimensional model but now the parameters are all non-dimensional. Denoting the non-dimensional parameters with an asterisk, they are related to dimensional parameters as follows:

Fig. 19
figure 19

Math

Fig. 20
figure 20

Math

We solve the non-dimensional model using the method described in Sect. 2.1. We simulate the model in COMSOL 3.5a, finding non-dimensional parameter values that yield oscillatory dynamics. We chose the same values as in Eq. 25 in [47] except for those parameters which were new because of our extension to the model. These latter values were chosen as follows: \( {D}_m^{*}={D}_{i_j}^{*}/5,{D}_p^{*}={D}_{i_j}^{*}/15,{d}^{*}=0.01,{a}^{*}=0.03,{l}^{*}=0.63. \)

Finally, we calculated the dimensional parameter values. To do this, we needed to estimate the reference values. Since Herl in zebrafish and Hesl in mice are both pathways connected with somitogenesis, we used the reference concentrations for Herl protein and herl mRNA in [50] as our reference concentrations for Hesl protein and hesl mRNA. Thus, we chose [m0] = l.5 × l0-9M and [p0] = l0-9M. We assumed a cell to be of width 30μm. But from Fig. 2 and Fig. 4, the cell width is equal to 3 non-dimensional spatial units or 3L dimensional units (using (l9)). Hence we set 3L = 30μm, so that L = l0μm. The experimentally observed period of oscillations of Hesl is approximately 2 hours [l6]. Our simulations of the non-dimensionalised model gave oscillations with a period of approximately 300 non-dimensional time units or 300τ dimensional units (using (l9)). Hence we set 300τ = 2hrs = 7200s, so that τ = 24s. Using our references values and non-dimensional parameter values, we found dimensional parameter values from 20.

Note that we chose our reference time τ = 24s based on simulations of the extended Hesl model since this was our most realistic Hesl model. For the original Hesl model and for all special cases of the Hesl model (for example, setting active transport rates to zero), we retained the reference time τ = 24s.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Chaplain, M.A.J., Sturrock, M., Terry, A.J. (2012). Spatio-Temporal Modelling of Intracellular Signalling Pathways: Transcription Factors, Negative Feedback Systems and Oscillations. In: d’Onofrio, A., Cerrai, P., Gandolfi, A. (eds) New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series. Springer, Milano. https://doi.org/10.1007/978-88-470-2571-4_4

Download citation

Publish with us

Policies and ethics