Skip to main content

Introduction

  • Chapter
  • First Online:
High Temperature Superconductivity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 213))

  • 2018 Accesses

Abstract

Triggered by the discovery of high-transition-temperature (high-T c) superconducting copper oxides in 1986, seven different material families have been found to show superconductivity at temperatures higher than 23 K, the record high-T c value before 1986. Six of them have T c’s not reaching 40 K, but the copper oxides and the iron compounds are distinct from others in their outstandingly high T c values, 135 K and 55 K, respectively and unconventional Cooper pairs. Most of them do not obey the Matthias rules which gave a guiding principle for finding new superconducting materials with high T c. Instead, several features emerge in common with most of the high-T c families. In this chapter, are raised basic questions; what makes T c high in each family and why copper oxides and iron compounds are so special with central concern on a possibility of enhancing T c.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bednorz JG, Müller KA (1986) Possible high T c superconductivity in the Ba-La-Cu-O system. Z Phys B 64:189–193

    Article  ADS  Google Scholar 

  2. Testardi LR, Wernik JH, Reyer WA (1974) Superconductivity with onset above 23 K in Nb-Ge sputtered films. Solid State Commun 15:1–4

    Article  ADS  Google Scholar 

  3. Cava RJ et al (1988) Superconductivity near 30 K without copper. Nature 332:814–815. doi:10.1038/332814a0

    Article  ADS  Google Scholar 

  4. Hebard AF et al (1991) Superconductivity at 18 K in potassium-doped fullerene (C60). Nature 350:600–601. doi:10.1038/350600a0

    Article  ADS  Google Scholar 

  5. Cava RJ et al (1994) Superconductivity at 23 K in yttrium palladium boride carbide. Nature 367:146–148. doi:10.1038/367146a0

    Article  ADS  Google Scholar 

  6. Yamanaka S, Hotehama KI, Kawaji H (1998) Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature 392:580–582. doi:10.1038/33362

    Article  ADS  Google Scholar 

  7. Nagamatsu J, Nakagawa N, Muranaka T, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–65. doi:10.1038/35065039

    Article  ADS  Google Scholar 

  8. Yabuuchi T, Matsuoka T, Nakamoto Y, Shimizu K (2006) Superconductivity of Ca exceeding 25 K at megabar pressures. J Phys Soc Jpn 75:083703. doi:10.1143/JPSJ.75.083703

    Article  ADS  Google Scholar 

  9. Kamihara Y, Watanebe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-x F x ]FeAs with T c = 26 K. J Am Chem Soc 130:3296–3297. doi:10.1021/ja800073m

    Article  Google Scholar 

  10. Mitsuhashi R et al (2010) Superconductivity in alkali-metal-doped picene. Nature 464:76–79. doi:10.1038/nature08859

    Article  ADS  Google Scholar 

  11. Serrao JL et al (2002) Plutonium-based superconductivity with a transition temperature above 18 K. Nature 420:297–299. doi:10.1038/nature01212

    Article  ADS  Google Scholar 

  12. Matthias BT (1955) Empirical relation between superconductivity and the number of valence electrons per atom. Phys Rev 97:74–76

    Article  ADS  Google Scholar 

  13. Schilling A, Cantoni M, Ott HR (1993) Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 363:56–58. doi:10.1038/363056a0

    Article  ADS  Google Scholar 

  14. Gao L et al (1994) Superconductivity up to 164 K in HgBa2Ca n-1Cu n O2m + 2 + δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys Rev B 50:4260–4263

    Article  ADS  Google Scholar 

  15. Ren ZA et al (2008) Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-x F x ]FeAs. Chin Phys Lett 25:2215–2216. doi:10.1088/0256-307X/25/6/080

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Uchida .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Uchida, Si. (2015). Introduction. In: High Temperature Superconductivity. Springer Series in Materials Science, vol 213. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55300-7_1

Download citation

Publish with us

Policies and ethics