Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 733 Accesses

Abstract

In this chapter, we review continuous-variable quantum states and quantum state manipulations. First, we show several formalisms of quantum states including state vectors, stabilizers, nullifiers and covariance matrices. Second, we show their transformations by unitary operations. Since we mainly handle Gaussian operations in this thesis, which are members of a subgroup of unitary operations, we then discuss Gaussian operations by focusing on their matrix-based formalisms and examples of their unitary operators. As the last issue, we discuss entangled states and entanglement criteria. We show an extension of the van Loock-Furusawa entanglement criteria, which enables us to detect entanglement in cluster states of arbitrary graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(V\) does not necessarily show a covariance matrix of a physical quantum state. For more details of symplectic matrices and symplectic groups, see Refs. [4, 5].

  2. 2.

    For more details of symplectic matrices and symplectic groups, see Refs. [4, 5].

  3. 3.

    In the following subsections, we show it as transformation rules for nullifiers.

  4. 4.

    Beam splitter matrices and operators are usually defined just as the author pleases in each paper. In some cases, the definitions of beam splitter matrices are not mentioned explicitly. Such ambiguity of their definition might confuse the readers. In this thesis, we define the four-types of beam splitters for convenience. By explicitly declaring the type of its matrix when we use a beam splitter in theory, we can avoid confusion derived from the ambiguity of the beam splitter matrix.

References

  1. Nielsen, M.A., Chuang, I. L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. van Loock, P., Weedbrook, C.: Building Gaussian cluster states by linear optics. Phys. Rev. A 76, 032321 (2007)

    Article  ADS  Google Scholar 

  3. Furusawa, A., van Loock, P.: Quantum Teleportation and Entanglement. Wiley-VCH, New York (2011)

    Google Scholar 

  4. Folland, G.B.: Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 112. Princeton University Press, Princeton (1989)

    Google Scholar 

  5. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (2002)

    Google Scholar 

  6. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  8. Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Corney, S.P., Delbourgo, R., Jarvis, P.D.: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics. International Press, Cambridge (1999)

    Google Scholar 

  10. Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)

    Google Scholar 

  11. van Loock, P., Furusawa, A.: Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A 67, 052315 (2003)

    Article  ADS  Google Scholar 

  12. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  13. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  14. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  15. Duan, L.-M., Giedke, G., Cirac, J.I., Zoller1, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    Google Scholar 

  16. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 25, 223 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  18. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  19. Werner, R.F., Wolf, M.M.: Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658 (2001)

    Article  ADS  Google Scholar 

  20. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  21. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  22. Horodecki, M., Horodecki, P., Horodecki, R.: Limits for entanglement measures. Phys. Rev. Lett. 84, 2014 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  23. Henderson, L., Vedral, V.: Information, relative entropy of entanglement, and irreversibility. Phys. Rev. Lett. 84, 2263 (2000)

    Article  ADS  Google Scholar 

  24. Hayden, P.M., Horodecki, M., Terhal, B.M.: The asymptotic entanglement cost of preparing a quantum state. J. Phys. A: Math. Gen. 34, 6891 (2001)

    Google Scholar 

  25. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  26. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Ukai .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ukai, R. (2015). Quantum States and Quantum State Manipulations. In: Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55019-8_3

Download citation

Publish with us

Policies and ethics