Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 710 Accesses

Abstract

The temporal-mode Gaussian cluster state [1] is a promising resource for large-scale one-way quantum computation. We show that quantum computations using a temporal-mode cluster state for one-mode operations are equivalent to a concatenation of quantum teleportations. In this process, we can utilize all the degrees of freedom of cluster modes for one-mode Gaussian operations without wasting resource modes by cluster mode erasing. In addition to this, we show that one-mode non-Gaussian operations and multi-mode Gaussian operations can also be achieved without eliminating resource modes of temporal-mode cluster states. These findings show that the same operation can be achieved by using less resource cluster modes than the original proposal in Ref. [1], leading to less error obtained from imperfect resources in quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In reality, we can simplify experimental setup by using several OPOs.

  2. 2.

    To be precise, the operations we here consider are members of the Symplectic group. Although displacements in phase space are excluded from the Symplectic group, it is known that they can be implemented by using one-step one-mode teleportation circuit (Sect. 5.5).

  3. 3.

    Note again that one might have to remove several modes of a temporal-mode cluster state although the modes to be removed have abilities to implement some operations. See Sect. 10.1.4.

  4. 4.

    Note again that one might have to remove several modes of a temporal-mode cluster state although the modes to be removed have abilities to implement some operations. See Sect. 10.1.4.

References

  1. Nicolas, C.: Menicucci, temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314 (2011)

    Article  Google Scholar 

  2. Zhang, J., Braunstein, S.L.: Continuous-variable Gaussian analog of cluster states. Phys. Rev. A 73, 032318 (2006)

    Article  ADS  Google Scholar 

  3. van loock, P., Weedbrook, C., Gu, M.: Building Gaussian cluster states by linear optics. Phys. Rev. A 76, 032321 (2007)

    Google Scholar 

  4. Su, X., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger Entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  5. Yukawa, M., Ukai, R., van Loock, P., Furusawa, A.: Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008)

    Article  ADS  Google Scholar 

  6. Menicucci, N.C., Ma, X., Ralph, T.C.: Arbitrarily large continuous-variable cluster states from a single quantum nondemolition gate. Phys. Rev. Lett. 104, 250503 (2010)

    Article  ADS  Google Scholar 

  7. Su X., Zhao Y., Hao S., Jia X., Xie C., Peng K.: Experimental preparation of eight-partite linear and two-diamond shape cluster states for photonic qumodes, arXiv:1205.0590 [quant-ph] (2012)

  8. Filip, R., Marek, P., Andersen, U.L.: Measurement-induced continuous-variable quantum interactions. Phys. Rev. A 71, 042308 (2005)

    Article  ADS  Google Scholar 

  9. Yoshikawa, J., Miwa, Y., Huck, A., Andersen, U.L., van Loock, P., Furusawa, A.: Demonstration of a quantum nondemolition sum gate. Phys. Rev. Lett. 101, 250501 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Gu, M., Weedbrook, C., Menicucci, N.C., Ralph, T.C., van Loock, P.: Quantum computing with continuous-variable clusters. Phys. Rev. A 79, 062318 (2009)

    Article  ADS  Google Scholar 

  11. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  12. Furusawa A., van Loock P.: Quantum teleportation and entanglement, WILEY-VCH, Weinheim (2011)

    Google Scholar 

  13. Ukai, R., Yoshikawa, J., Iwata, N., van Loock, P., Furusawa, A.: Universal linear Bogoliubov transformations through one-way quantum computation. Phys. Rev. A 81, 032315 (2010)

    Article  ADS  Google Scholar 

  14. Braunstein, S.L.: Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005)

    Article  ADS  Google Scholar 

  15. Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)

    Article  ADS  Google Scholar 

  16. van Loock, P.: Examples of Gaussian cluster computation. J. Opt. Soc. Am. B 24, 340 (2007)

    Article  ADS  Google Scholar 

  17. Yokoyama, S., Ukai, R., Armstrong, S.C., Sornphiphatphong, C., Kaji, T., Suzuki, S., Yoshikawa, J., Yonezawa, H., Menicucci, N.C., Furusawa, A.: Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics 7, 982 (2013)

    Article  ADS  Google Scholar 

  18. Takeda, S., Mizuta, T., Fuwa, M., Yoshikawa, J., Yonezawa, H., Furusawa, A.: Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing. Phys. Rev. A 87, 043803 (2013)

    Article  ADS  Google Scholar 

  19. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P., Furusawa, A.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315 (2013)

    Article  ADS  Google Scholar 

  20. Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Ukai, R., Yokoyama, S., Yoshikawa, J., van Loock, P., Furusawa, A.: Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. Phys. Rev. Lett. 107, 250501 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Ukai .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ukai, R. (2015). Temporal-Mode Cluster States. In: Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55019-8_10

Download citation

Publish with us

Policies and ethics