Skip to main content

Rehabilitation After Bone Marrow Stimulation

  • Chapter
  • First Online:
Talar Osteochondral Defects

Abstract

The primary treatment of osteochondral defects up to 15 mm in the talus consists of arthroscopic debridement (excision and curettage) and bone marrow stimulation (BMS) [ 54 ]. The aim of bone marrow stimulation is to create multiple connections with the subchondral bone. This can be accomplished by drilling or by microfracturing. The main goal after treatment is to return to daily activities and to the activity level before injury. As yet, there is no consensus regarding rehabilitation. Reduced loading and controlled joint motion can stimulate cartilage repair. Animal studies that compared postoperative continuous passive motion (CPM) and cast immobilisation showed faster healing with CPM, as well as thicker and stiffer cartilage with a greater concentration of proteoglycans [ 18 , 37 , 41 ].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad CS, Kwak SD, Ateshian GA, Warden WH, Steadman JR, Mow VC. Effects of patellar tendon adhesion to the anterior tibia on knee mechanics. Am J Sports Med. 1998;26:715–24.

    CAS  PubMed  Google Scholar 

  2. Alexander AH, Lichtman DM. Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am. 1980;62:646–52.

    CAS  PubMed  Google Scholar 

  3. Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG, Engebretsen L. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32:211–5.

    Article  PubMed  Google Scholar 

  4. Arokoski JP, Jurvelin JS, Vaatainen U, Helminen HJ. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports. 2000;10:186–98.

    Article  CAS  PubMed  Google Scholar 

  5. Baker Jr CL, Morales RW. Arthroscopic treatment of transchondral talar dome fractures: a long-term follow-up study. Arthroscopy. 1999;15:197–202.

    Article  PubMed  Google Scholar 

  6. Becher C, Driessen A, Hess T, Longo UG, Maffulli N, Thermann H. Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up. Knee Surg Sports Traumatol Arthrosc. 2010;18:656–63.

    Article  PubMed  Google Scholar 

  7. Becher C, Thermann H. Results of microfracture in the treatment of articular cartilage defects of the talus. Foot Ankle Int. 2005;26:583–9.

    PubMed  Google Scholar 

  8. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41-A:988–1020.

    CAS  PubMed  Google Scholar 

  9. Bonnin M, Bouysset M. Arthroscopy of the ankle: analysis of results and indications on a series of 75 cases. Foot Ankle Int. 1999;20:744–51.

    Article  CAS  PubMed  Google Scholar 

  10. Brophy RH, Rodeo SA, Barnes RP, Powell JW, Warren RF. Knee articular cartilage injuries in the National Football League: epidemiology and treatment approach by team physicians. J Knee Surg. 2009;22:331–8.

    Article  PubMed  Google Scholar 

  11. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    CAS  PubMed  Google Scholar 

  12. Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg. 1994;2:192–201.

    PubMed  Google Scholar 

  13. Chin TW, Mitra AK, Lim GH, Tan SK, Tay BK. Arthroscopic treatment of osteochondral lesion of the talus. Ann Acad Med Singapore. 1996;25:236–40.

    CAS  PubMed  Google Scholar 

  14. Choi WJ, Kim BS, Lee JW. Osteochondral lesion of the talus: could age be an indication for arthroscopic treatment? Am J Sports Med. 2012;40:419–24.

    Article  PubMed  Google Scholar 

  15. Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008;24:106–12.

    Article  PubMed  Google Scholar 

  16. Draper SD, Fallat LM. Autogenous bone grafting for the treatment of talar dome lesions. J Foot Ankle Surg. 2000;39:15–23.

    Article  CAS  PubMed  Google Scholar 

  17. Flick AB, Gould N. Osteochondritis dissecans of the talus (transchondral fractures of the talus): review of the literature and new surgical approach for medial dome lesions. Foot Ankle. 1985;5:165–85.

    Article  CAS  PubMed  Google Scholar 

  18. French DA, Barber SM, Leach DH, Doige CE. The effect of exercise on the healing of articular cartilage defects in the equine carpus. Vet Surg. 1989;18:312–21.

    Article  CAS  PubMed  Google Scholar 

  19. Frenkel SR, Di Cesare PE. Degradation and repair of articular cartilage. Front Biosci. 1999;4:D671–85.

    Article  CAS  PubMed  Google Scholar 

  20. Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res. 2003; 407:215–27.

    Google Scholar 

  21. Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am. 1980;62:79–89.

    CAS  PubMed  Google Scholar 

  22. Gill TJ, McCulloch PC, Glasson SS, Blanchet T, Morris EA. Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am J Sports Med. 2005;33:680–5.

    Article  PubMed  Google Scholar 

  23. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006;22:1085–92.

    Article  PubMed  Google Scholar 

  24. Guettler JH, Demetropoulos CK, Yang KH, Jurist KA. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med. 2004;32:1451–8.

    Article  PubMed  Google Scholar 

  25. Hakimzadeh A, Munzinger U. 8. Osteochondrosis dissecans: results after 10 or more years. c). Osteochondrosis dissecans of the ankle joint: long-term study. Orthopade. 1979;8:135–40.

    CAS  PubMed  Google Scholar 

  26. Hinterwimmer S, Krammer M, Krotz M, Glaser C, Baumgart R, Reiser M, Eckstein F. Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheum. 2004;50:2516–20.

    Article  CAS  PubMed  Google Scholar 

  27. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18:730–4.

    Article  PubMed  Google Scholar 

  28. Hunt KJ, Lee AT, Lindsey DP, Slikker III W, Chou LB. Osteochondral lesions of the talus: effect of defect size and plantarflexion angle on ankle joint stresses. Am J Sports Med. 2012;40:895–901.

    Article  PubMed  Google Scholar 

  29. Lane SR, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ. Effects of shear stress on articular chondrocyte metabolism. Biorheology. 2000;37:95–107.

    Google Scholar 

  30. Lee DH, Lee KB, Jung ST, Seon JK, Kim MS, Sung IH. Comparison of early versus delayed weightbearing outcomes after microfracture for small to midsized osteochondral lesions of the talus. Am J Sports Med. 2012;40(9):2023–8.

    Google Scholar 

  31. Lee KB, Bai LB, Yoon TR, Jung ST, Seon JK. Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med. 2009;37 Suppl 1:63S–70.

    Article  PubMed  Google Scholar 

  32. Mendicino RW, Lee MS, Grossman JP, Shromoff PJ. Oblique medial malleolar osteotomy for the management of talar dome lesions. J Foot Ankle Surg. 1998;37:516–23.

    Article  CAS  PubMed  Google Scholar 

  33. Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Della VS. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther. 2012;42:254–73.

    Article  PubMed  Google Scholar 

  34. Negrin L, Kutscha-Lissberg F, Gartlehner G, Vecsei V. Clinical outcome after microfracture of the knee: a meta-analysis of before/after-data of controlled studies. Int Orthop. 2012;36:43–50.

    Article  PubMed Central  PubMed  Google Scholar 

  35. O’Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80:1795–812.

    PubMed  Google Scholar 

  36. O’Farrell TA, Costello BG. Osteochondritis dissecans of the talus. The late results of surgical treatment. J Bone Joint Surg Br. 1982;64:494–7.

    PubMed  Google Scholar 

  37. Palmer JL, Bertone AL, Malemud CJ, Carter BG, Papay RS, Mansour J. Site-specific proteoglycan characteristics of third carpal articular cartilage in exercised and nonexercised horses. Am J Vet Res. 1995;56:1570–6.

    CAS  PubMed  Google Scholar 

  38. Papaioannou G, Demetropoulos CK, King YH. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model. Knee. 2010;17:61–8.

    Article  PubMed  Google Scholar 

  39. Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW. Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthritis Cartilage. 2003;11:810–20.

    Article  PubMed  Google Scholar 

  40. Robinson DE, Winson IG, Harries WJ, Kelly AJ. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Br. 2003;85:989–93.

    Article  CAS  PubMed  Google Scholar 

  41. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1980;62:1232–51.

    CAS  PubMed  Google Scholar 

  42. Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med. 2007;35:1680–7.

    Article  PubMed  Google Scholar 

  43. Schuman L, Struijs PA, van Dijk CN. Arthroscopic treatment for osteochondral defects of the talus. Results at follow-up at 2 to 11 years. J Bone Joint Surg Br. 2002;84:364–8.

    Article  CAS  PubMed  Google Scholar 

  44. Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002;15:170–6.

    PubMed  Google Scholar 

  45. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391 Suppl:S362–S369.

    Google Scholar 

  46. Takao M, Ochi M, Naito K, Uchio Y, Kono T, Oae K. Arthroscopic drilling for chondral, subchondral, and combined chondral-subchondral lesions of the talar dome. Arthroscopy. 2003;19:524–30.

    Article  PubMed  Google Scholar 

  47. Theodoropoulos J, Dwyer T, Whelan D, Marks P, Hurtig M, Sharma P. Microfracture for knee chondral defects: a survey of surgical practice among Canadian orthopedic surgeons. Knee Surg Sports Traumatol Arthrosc. 2012;20(12):2430–7.

    Google Scholar 

  48. Thermann H, Becher C. Microfracture technique for treatment of osteochondral and degenerative chondral lesions of the talus. 2-year results of a prospective study. Unfallchirurg. 2004;107:27–32.

    Article  CAS  PubMed  Google Scholar 

  49. van Bergen CJ, Blankevoort L, de Haan RJ, Sierevelt IN, Meuffels DE, d’Hooghe PR, Krips R, van Damme G, van Dijk CN. Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial. BMC Musculoskelet Disord. 2009;10:83.

    Article  PubMed Central  PubMed  Google Scholar 

  50. van Bergen CJ, de Leeuw PA, van Dijk CN. Treatment of osteochondral defects of the talus. Rev Chir Orthop Reparatrice Appar Mot. 2008;94:398–408.

    Article  PubMed  Google Scholar 

  51. van Dijk CN, van Bergen CJ. Advancements in ankle arthroscopy. J Am Acad Orthop Surg. 2008;16:635–46.

    PubMed  Google Scholar 

  52. Van BK, Barrack RL, Alexander AH, Ertl JP. Arthroscopic treatment of transchondral talar dome fractures. Am J Sports Med. 1989;17:350–5.

    Article  Google Scholar 

  53. Yen YM, Cascio B, O’Brien L, Stalzer S, Millett PJ, Steadman JR. Treatment of osteoarthritis of the knee with microfracture and rehabilitation. Med Sci Sports Exerc. 2008;40:200–5.

    Article  PubMed  Google Scholar 

  54. Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18:238–46.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

The author has no current conflict of interests with the products presented

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge C. M. van Eekeren MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 ESSKA

About this chapter

Cite this chapter

van Eekeren, I.C.M., Eleftheriou, K.I., van Bergen, C.J.A., Calder, J.D.F. (2014). Rehabilitation After Bone Marrow Stimulation. In: van Dijk, C., Kennedy, J. (eds) Talar Osteochondral Defects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45097-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45097-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45096-9

  • Online ISBN: 978-3-642-45097-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics