Skip to main content

Quality Assurance and Commissioning

  • Chapter
  • First Online:
Targeted Intraoperative Radiotherapy in Oncology

Abstract

The X-ray source (XRS 4) of the INTRABEAM® system accelerates electrons with a maximum voltage of 50 kV. These are steered down a 10-cm-long drift tube (probe) to strike a thin gold target at the end, and generate bremsstrahlung photon radiation in an approximately isotropic distribution (Wenz and Kraus-Tiefenbacher 2011). The probe tip consists of beryllium, transparent to X-rays above an energy of 10 keV, coated with nickel and titanium nitride, to give a durable and biocompatible surface. All of these materials will affect the characteristic spectrum of the source, to give an effective energy of approximately 20 kV for the probe only (Beatty et al. 1996; Dinsmore et al. 1996). With a spherical breast applicator attached, the beam will be hardened due to the additional material in the path of the radiation, which preferentially absorbs lower energy photons. The applicators are made from a biocompatible polyetherimide material (Ultem®), with an additional aluminium layer inside the smaller sizes (≤3.0 cm diameter) to give similar levels of hardening and shield the shaft from excess leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andres C, del Castillo A, Tortosa R, Alonso D, Barquero R (2010) A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med Phys 37:6271–6278

    Article  CAS  PubMed  Google Scholar 

  • Beatty J, Biggs PJ, Gall K, Okunieff P, Pardo FS, Harte KJ et al (1996) A new miniature x-ray device for interstitial radiosurgery: dosimetry. Med Phys 23:53–62

    Article  CAS  PubMed  Google Scholar 

  • Carl Zeiss Meditec AG (2011) INTRABEAM® dosimetry. Carl Zeiss Meditec AG, Oberkochen

    Google Scholar 

  • Carrier JF, Archambault L, Beaulieu L, Roy R (2004) Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics. Med Phys 31:484–492

    Article  CAS  PubMed  Google Scholar 

  • Clausen S, Schneider F, Jahnke L, Fleckenstein J, Hesser J, Wenz F (2012) A Monte Carlo based dose calculation method for intravaginal TARGIT brachytherapy using the INTRABEAM system with a cylindrical applicator. Z Med Phys 22:197–204

    Article  PubMed  Google Scholar 

  • Dinsmore M, Harte KJ, Sliski AP, Smith DO, Nomikos PM, Dalterio MJ et al (1996) A new miniature x-ray source for interstitial radiosurgery: device description. Med Phys 23:45–52

    Article  CAS  PubMed  Google Scholar 

  • Eaton DJ (2012) Quality assurance and independent dosimetry for an intraoperative x-ray device. Med Phys 39:6908–6920

    Article  CAS  PubMed  Google Scholar 

  • Eaton DJ, Duck S (2010) Dosimetry measurements with an intra-operative x-ray device. Phys Med Biol 55:N359–N369

    Article  CAS  PubMed  Google Scholar 

  • Eaton DJ, Best B, Brew-Graves C, Duck S, Ghaus T, Gonzalez R et al (2012) In vivo dosimetry for single fraction targeted intraoperative radiotherapy (TARGIT) for breast cancer. Int J Radiat Oncol Biol Phys 82:e809–e814

    Article  Google Scholar 

  • Fogg P, Das KR, Kron T, Fox C, Chua B, Hagekyriakou J (2010) Thermoluminescence dosimetry for skin dose assessment during intraoperative radiotherapy for early breast cancer. Australas Phys Eng Sci Med 33:211–214

    Article  CAS  PubMed  Google Scholar 

  • Gallina P, Francescon P, Cavedon C, Casamassima F, Mungai R, Perrini P et al (2002) Stereotactic interstitial radiosurgery with a miniature X-ray device in the minimally invasive treatment of selected tumors in the thalamus and the basal ganglia. Stereotact Funct Neurosurg 79:202–213

    Article  PubMed  Google Scholar 

  • Hakim R, Zervas NT, Hakim F, Butler WE, Beatty J, Yanch JC et al (1997) Initial characterization of the dosimetry and radiology of a device for administering interstitial stereotactic radiosurgery. Neurosurgery 40:510–516, discussion 516–517

    CAS  PubMed  Google Scholar 

  • Härtl PM, Dobler B, Kölbl O, Treutwein M (2009) Practical dosimetry and constancy check at introduction of intraoperative radiotherapy with Intrabeam® (Zeiss). Z Med Phys 19:288–293

    Article  PubMed  Google Scholar 

  • Milhoretto E, Schelin HR, Setti JA, Denyak V, Paschuk SA, Evseev IG et al (2010) GEANT4 simulations for low energy proton computerized tomography. Appl Radiat Isot 68:951–953

    Article  CAS  PubMed  Google Scholar 

  • Nwankwo O, Clausen S, Schneider F, Wenz F (2013) A virtual source model of a kilo-voltage radiotherapy device. Phys Med Biol 58:2363–2375

    Article  CAS  PubMed  Google Scholar 

  • Schneider F, Polednik M, Wolff D, Steil V, Delana A, Wenz F, Menegotti L (2009a) Optimization of the Gafchromic EBT protocol for IMRT QA. Z Med Phys 19:29–37

    Article  PubMed  Google Scholar 

  • Schneider F, Fuchs H, Lorenz F, Steil V, Ziglio F, Kraus-Tiefenbacher U et al (2009b) A novel device for intravaginal electronic brachytherapy. Int J Radiat Oncol Biol Phys 74:1298–1305

    Article  PubMed  Google Scholar 

  • Soares C, Drupieski C, Wingert B, Pritchett G, Pagonis V, O’Brien M et al (2006) Absorbed dose measurements of a handheld 50 kVP X-ray source in water with thermoluminescence dosemeters. Radiat Prot Dosimetry 120:78–82

    Article  CAS  PubMed  Google Scholar 

  • Wenz F, Kraus-Tiefenbacher U (2011) Physical and technical aspects. Intraoperative radiotherapy for breast cancer, 1st edn. UNI-MED Verlag AG, Bremen

    Google Scholar 

  • Yanch J, Harte KJ (1996) Monte Carlo simulation of a miniature, radiosurgery x-ray tube using the ITS 3.0 coupled electron-photon transport code. Med Phys 23:1551–1558

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, F., Clausen, S., Eaton, D.J. (2014). Quality Assurance and Commissioning. In: Keshtgar, M., Pigott, K., Wenz, F. (eds) Targeted Intraoperative Radiotherapy in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39821-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39821-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39820-9

  • Online ISBN: 978-3-642-39821-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics