Skip to main content

Structured Sparse Bayesian Modelling for Audio Restoration

  • Chapter
  • First Online:
Compressed Sensing & Sparse Filtering

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter shows how sparse solutions can be obtained for a range of problems in a Bayesian setting by using prior models on sparsity structure. As an example, a model to remove impulse and background noise from audio signals via their representation in time-frequency space using Gabor wavelets is presented. A number of prior models for the sparse structure of the signal in this space are introduced, including simple Bernoulli priors on each coefficient, Markov chains linking neighbouring coefficients in time or frequency, and Markov random fields, imposing two dimensional coherence on the coefficients. The effect of each of these priors on the reconstruction of a corrupted audio signal is shown. Impulse removal is also covered, with similar sparsity priors being applied to the location of impulse noise in the audio signal. Inference is performed by sampling from the posterior distribution of the model variables using a Gibbs sampler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balian R (1981) Un principe dincertitude fort en théorie du signal ou en mécanique quantique. CR Acad Sci Paris 292(2):1357–1361

    Google Scholar 

  2. Boll S (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans Acoust Speech Signal Process 27(2):113–120

    Article  Google Scholar 

  3. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MATH  Google Scholar 

  4. Candès EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  Google Scholar 

  5. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  MathSciNet  MATH  Google Scholar 

  6. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  7. Erkelens JS, Heusdens R (2008) Tracking of nonstationary noise based on data-driven recursive noise power estimation. IEEE Trans Audio Speech Lang Process 16(6):1112–1123

    Article  Google Scholar 

  8. Feichtinger HG, Strohmer T (1998) Gabor analysis algorithms: theory and applications. Birkhäuser, Boston

    Google Scholar 

  9. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  10. Gilks WR, Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman & Hall/CRC, London

    Google Scholar 

  11. Godsill SJ , Rayner PJW (1998) Digital audio restoration:a statistical model-based approach. Springer, Berlin (ISBN 3 540 76222 1, Sept 1998)

    Google Scholar 

  12. Godsill SJ (2010) The shifted inverse-gamma model for noise floor estimation in archived audio recordings. Appl Signal Process 90.991-999(Special Issue on Preservation of Ethnological Recordings)

    Google Scholar 

  13. Gustafsson S, Martin R, Jax P, Vary P (2002) A psychoacoustic approach to combined acoustic echo cancellation and noise reduction. IEEE Trans Speech Audio Process 10(5):245–256

    Article  Google Scholar 

  14. Low F (1985) Complete sets of wave packets. A passion for physics-essays in honor of Geoofrey Chew. World Scientific, Singapore, pp 17–22

    Google Scholar 

  15. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans sig process 41(12):3397–3415

    Article  MATH  Google Scholar 

  16. McGrory CA, Titterington DM, Reeves R et al (2009) DM Titterington, R. Reeves, and A.N. Pettitt. Variational Bayes for estimating the parameters of a hidden Potts model. Stat Comput 19(3):329–340

    Google Scholar 

  17. Murphy J, Godsill S (2011) Joint Bayesian removal of impulse and background noise. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 261–264

    Google Scholar 

  18. Murphy J, (2013) Sparse audio restoration in hidden states, hidden structures: bayesian learning in time series models, PhD Thesis, Cambridge University

    Google Scholar 

  19. Niss M (2005) History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena. Arch Hist Exact Sci 59(3):267–318

    Article  MathSciNet  MATH  Google Scholar 

  20. Qian S, Chen D ( 1993) Discrete Gabor transform. IEEE Trans Sig Process 41(7):2429–2438

    Google Scholar 

  21. Soon IY, Koh SN, Yeo CK (1998) Noisy speech enhancement using discrete cosine transform. Speech Commun 24(3):249–257

    Article  Google Scholar 

  22. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58: 267–288

    Google Scholar 

  23. Wolfe PJ, Godsill SJ, Ng WJ (2004) Bayesian variable selection and regularisation for time-frequency surface estimation. J R Stat Soc Ser B 66(3):575–589 Read paper (with discussion)

    Google Scholar 

  24. Wolfe PJ, Godsill SJ (2005) Interpolation of missing data values for audio signal restoration using a Gabor regression model. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 517–520

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murphy, J., Godsill, S. (2014). Structured Sparse Bayesian Modelling for Audio Restoration. In: Carmi, A., Mihaylova, L., Godsill, S. (eds) Compressed Sensing & Sparse Filtering. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38398-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38398-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38397-7

  • Online ISBN: 978-3-642-38398-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics