Skip to main content

Inhomogeneous Axial Deformation for Orthopedic Surgery Planning

  • Conference paper
Computer Vision, Imaging and Computer Graphics. Theory and Applications (VISIGRAPP 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 274))

  • 1957 Accesses

Abstract

Intuitive global deformation of complex geometries is very important for many applications. In particular, in the biomedical domain, where interactive manipulation of 3D organic shapes is becoming an increasingly common task. Axial deformation is natural and powerful approach for modeling of tubular structures, like bones. With this approach, the embedding space is associated with deformable curve, the handle axis, which guides deformation of the embedded model. As a result, the produced deformation is homogeneous and independent of the model representation and shape. However, in many situations it is beneficial to incorporate geometric and physical properties of the model into the deformation formulation. This leads to inhomogeneous axial deformation which allows to achieve more intuitive results with less user interaction. In this work, the inhomogeneous axial deformation is achieved through deformation distribution function (DDF) induced on the guiding axis by the embedded model. Since with the proposed formulation the DDF can be pre-computed, run-time computational complexity of the method is similar to the original axial deformation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azernikov, S.: Sweeping solids on manifolds. In: Haines, E., McGuire, M. (eds.) Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, June 2-4, pp. 249–255. ACM, Stony Brook (2008)

    Chapter  Google Scholar 

  2. Barr, A.H.: Global and local deformations of solid primitives. In: ACM Computer Graphics SIGGRAPH 1984, pp. 21–30 (1984)

    Google Scholar 

  3. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Evans, D.C., Athay, R.J. (eds.) Computer Graphics (SIGGRAPH 1986 Proceedings), Dallas, Texas, vol. 20, pp. 151–160 (1986)

    Google Scholar 

  4. Gain, J.E., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27 (2008)

    Google Scholar 

  5. Feng, J., Ma, L., Peng, Q.: A new free-form deformation through the control of parametric surfaces. Computers & Graphics 20, 531–539 (1996)

    Article  Google Scholar 

  6. Lazarus, F., Coquillart, S., Jancène, P.: Axial deformations: an intuitive deformation technique. Computer-Aided Design 26, 607–613 (1994)

    Article  MATH  Google Scholar 

  7. Peng, Q., Jin, X., Feng, J.: Arc-length-based axial deformation and length preserved animation. IEEE Computer Society (1997)

    Google Scholar 

  8. Sorkine, O.: Laplacian mesh processing. In: Chrysanthou, Y., Magnor, M. (eds.) STAR Proceedings of Eurographics 2005, pp. 53–70. Eurographics Association, Dublin (2005)

    Google Scholar 

  9. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24, 479–487 (2005)

    Article  Google Scholar 

  10. Popa, T., Julius, D., Sheffer, A.: Material-aware mesh deformations. In: Shape Modeling International. IEEE Computer Society (2006)

    Google Scholar 

  11. Kraevoy, V., Sheffer, A., Shamir, A., Cohen-Or, D.: Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 111 (2008)

    Article  Google Scholar 

  12. Timoshenko, S.: Theory of Elasticity. McGraw Hill (1970)

    Google Scholar 

  13. Gelfand, N., Guibas, L.J.: Shape segmentation using local slippage analysis. In: Fellner, D., Spencer, S. (eds.) Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP-2004), pp. 219–228. Eurographics Association, Aire-la-Ville (2004)

    Google Scholar 

  14. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc. (1976)

    Google Scholar 

  15. Farin, G.: Curves and Surfaces for Computer-Aided Geometric Design - A Practical Guide. Academic Press (1997)

    Google Scholar 

  16. Koenderink, J.J.: Solid Shape. MIT Press (1990)

    Google Scholar 

  17. Klok, F.: Two moving coordinate frames for sweeping along a 3D, trajectory. Computer Aided Geometric Design 3, 217–229 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yoon, S.-H., Kim, M.-S.: Sweep-based freeform deformations. Computer Graphics Forum 25, 487–496 (2006)

    Article  Google Scholar 

  19. Au, O.K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27, 1–10 (2008)

    Article  Google Scholar 

  20. Hazan, E., Joskowicz, L.: Computer-assisted image-guided intramedullary nailing of femoral shaft fractures. Techniques in Orthopedics 18 (2003)

    Google Scholar 

  21. Messmer, P., Long, G., Suhm, N., Regazzoni, P., Jacob, A.L.: Volumetric model determination of the tibia based on radiographs using 2d/3d database. Computer Aided Surgery 6, 183–194 (2001)

    Article  Google Scholar 

  22. Rozbruch, S.R., Fragomen, A.T., Ilizarov, S.: Correction of tibial deformity with use of the ilizarov-taylor spatial frame. Journal of Bone and Joint Surgery 88, 156–174 (2006)

    Article  Google Scholar 

  23. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 553–560 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azernikov, S. (2013). Inhomogeneous Axial Deformation for Orthopedic Surgery Planning. In: Csurka, G., Kraus, M., Mestetskiy, L., Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2011. Communications in Computer and Information Science, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32350-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32350-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32349-2

  • Online ISBN: 978-3-642-32350-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics