Skip to main content

Reconciling Competing Models: A Case Study of Wine Fermentation Kinetics

  • Conference paper
Algebraic and Numeric Biology

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6479))

  • 677 Accesses

Abstract

Mathematical models of wine fermentation kinetics promise early diagnosis of stuck or sluggish winemaking processes as well as better matching of industrial yeast strains to specific vineyards. The economic impact of these challenges is significant: worldwide losses from stuck or sluggish fermentations are estimated at 7 billion € annually, and yeast starter production is a highly competitive market estimated at 40 million € annually. Additionally, mathematical models are an important tool for studying the biology of wine yeast fermentation through functional genomics, and contribute to our understanding of the link between genotype and phenotype for these important cell factories.

We have developed an accurate combined model that best matches experimental observations over a wide range of initial conditions. This model is based on mathematical analysis of three competing ODE models for wine fermentation kinetics and statistical comparison of their predictions with a large set of experimental data. By classifying initial conditions into qualitative intervals and by systematically evaluating the competing models, we provide insight into the strengths and weaknesses of the existing models, and identify the key elements of their symbolic representation that most influence the accuracy of their predictions. In particular, we can make a distinction between main effects and secondary quadratic effects, that model interactions between cellular processes. We generalize our methodology to the common case where one wishes to combine competing models and refine them to better agree with experimental data. The first step is symbolic, and rewrites each model into a polynomial form in which main and secondary effects are conveniently expressed. The second step is statistical, classifying the match of each model’s predictions with experimental data, and identifying the key terms in its equations. Finally, we use a combination of those terms to instantiate the combined model expressed in polynomial form. We show that this procedure is feasible for the case of wine fermentation kinetics, allowing predictions which closely match experimental observations in normal and problematic fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backhus, L.E., DeRisi, J., Brown, P.O., Bisson, L.F.: Functional genomic analysis of a commercial wine strain of saccharomyces cerevisiae under diering nitrogen conditions. FEMS Yeast Research 1, 111–125 (2001)

    Article  Google Scholar 

  2. Barros, F.J., Mendes, M.T., Zeigler, B.P.: Variable DEVS-variable structure modeling formalism: an adaptive computer architecture application. In: Fifth Annual Conference on AI, and Planning in High Autonomy Systems, Gainesville, FL, USA, pp. 185–191 (1994)

    Google Scholar 

  3. Bisson, L.F.: Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50(1), 107–119 (1999)

    Google Scholar 

  4. Boulton, R.: The prediction of fermentation behavior by a kinetic model. Am. J. Enol. Vitic. 31(1), 40–45 (1980)

    Google Scholar 

  5. Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E.: Principles and Practices of Winemaking, 1st edn. Springer, Heidelberg (1996)

    Book  Google Scholar 

  6. Coleman, M.C., Fish, R., Block, D.E.: Temperature-Dependent kinetic model for Nitrogen-Limited wine fermentations. Applied and Environmental Microbiology 73(18), 5875–5884 (2007); PMID: 17616615 PMCID: 2074923

    Article  Google Scholar 

  7. Cramer, A.C., Vlassides, S., Block, D.E.: Kinetic model for nitrogen-limited wine fermentations. Biotechnology and Bioengineering 77(1), 49–60 (2002)

    Article  Google Scholar 

  8. SBML developers. Sbml composition workshop (September 2007), http://sbml.info/Events/Other_Events/SBML_Composition_Workshop_2007

  9. Drysdale, G.S., Fleet, G.H.: Acetic acid bacteria in winemaking: A review. Am. J. Enol. Vitic. 39(2), 143–154 (1988)

    Google Scholar 

  10. Fleet, G.H., Lafon-Lafourcade, S., Ribreau-Gayon, P.: Evolution of yeasts and lactic acid bacteria during fermentation and storage of bordeaux wines. Applied and Environmental Microbiology 48(5), 1034–1038 (1984); PMID: 16346661 PMCID: 241671

    Google Scholar 

  11. Fleet, G.H.: Wine Microbiology and Biotechnology, 1st edn. CRC Press (1993)

    Google Scholar 

  12. Frezier, V., Dubourdieu, D.: Ecology of yeast strain saccharomyces cerevisiae during spontaneous fermentation in a bordeaux winery. Am. J. Enol. Vitic. 43(4), 375–380 (1992)

    Google Scholar 

  13. Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I., Khorana, H.G.: Studies on polynucleotides: XCVI. repair replication of short synthetic DNA’s as catalyzed by DNA polymerases. Journal of Molecular Biology 56(2), 341–361 (1971)

    Article  Google Scholar 

  14. Kulesh, D.A., Clive, D.R., Zarlenga, D.S., Greene, J.J.: Identification of interferon-modulated proliferation-related cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America 84(23), 8453–8457 (1987)

    Article  Google Scholar 

  15. Malherbe, S., Fromion, V., Hilgert, N., Sablayrolles, J.-M.: Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnology and Bioengineering 86(3), 261–272 (2004)

    Article  Google Scholar 

  16. Mendes-Ferreira, A., del Olmo, M., Garcia-Martinez, J., Jimenez-Marti, E., Mendes-Faia, A., Perez-Ortin, J.E., Leao, C.: Transcriptional response of saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl. Environ. Microbiol. 73(9), 3049–3060 (2007)

    Article  Google Scholar 

  17. Mendes-Ferreira, A., del Olmo, M., Garcia-Martinez, J., Jimenez-Marti, E., Leao, C., Mendes-Faia, A., Perez-Ortin, J.E.: Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Applied and Environmental Microbiology 73(16), 5363–5369 (2007); PMID: 17601813 PMCID: 1950961

    Article  Google Scholar 

  18. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3), 426–428 (1959)

    Article  Google Scholar 

  19. Monod: La technique de culture continue; thorie et applications. Ann Ist Pasteur Lille 79, 390–410 (1950)

    Google Scholar 

  20. Murray, J.D.: Mathematical Biology: I. An Introduction (Interdisciplinary Applied Mathematics), 3rd edn. Springer, Heidelberg (2007)

    Google Scholar 

  21. Nurgel, C., Erten, H., Canbas, A., Cabaroglu, T., Selli, S.: Yeast flora during the fermentation of wines made from vitis viniferaL. cv. emir and kalecik karasi grown in anatolia. World Journal of Microbiology and Biotechnology 21(6), 1187–1194 (2005)

    Article  Google Scholar 

  22. Pizarro, F., Varela, C., Martabit, C., Bruno, C., Ricardo Prez-Correa, J., Agosin, E.: Coupling kinetic expressions and metabolic networks for predicting wine fermentations. Biotechnology and Bioengineering 98(5), 986–998 (2007)

    Article  Google Scholar 

  23. Rodrguez, M.E., Lopes, C.A., Barbagelata, R.J., Barda, N.B., Caballero, A.C.: Influence of candida pulcherrima patagonian strain on alcoholic fermentation behaviour and wine aroma. International Journal of Food Microbiology 138(1-2), 19–25 (2010); PMID: 20116878

    Article  Google Scholar 

  24. Sainz, J., Pizarro, F., Ricardo Prez-Correa, J., Agosin, E.: Modeling of yeast metabolism and process dynamics in batch fermentation. Biotechnology and Bioengineering 81(7), 818–828 (2003)

    Article  Google Scholar 

  25. Santamara, P., Garijo, P., Lpez, R., Tenorio, C., Gutirrez, A.R.: Analysis of yeast population during spontaneous alcoholic fermentation: Effect of the age of the cellar and the practice of inoculation. International Journal of Food Microbiology 103(1), 49–56 (2005)

    Article  Google Scholar 

  26. Scaglia, G.J.E., Aballay, P.M., Mengual, C.A., Vallejo, M.D., Ortiz, O.A.: Improved phenomenological model for an isothermal winemaking fermentation. Food Control 20(10), 887–895 (2009)

    Article  Google Scholar 

  27. Selgrade, J.F.: Dynamical behavior of a competitive model with genetic variation. Applied Mathematics Letters 2(1), 49–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shuler, M.L., Kargi, F.: Bioprocess Engineering: Basic Concepts, 1st edn. Prentice Hall College Div. (November 1991)

    Google Scholar 

  29. Subramanian, V., Buck, K.K.S., Block, D.E.: Use of decision tree analysis for determination of critical enological and viticultural processing parameters in historical databases. Am. J. Enol. Vitic. 52(3), 175–184 (2001)

    Google Scholar 

  30. Teissier, P., Perret, B., Latrille, E., Barillere, J.M., Corrieu, G.: A hybrid recurrent neural network model for yeast production monitoring and control in a wine base medium. Journal of Biotechnology 55(3), 157–169 (1997)

    Article  Google Scholar 

  31. Toro, M.E., Vazquez, F.: Fermentation behaviour of controlled mixed and sequential cultures of candida cantarellii and saccharomyces cerevisiae wine yeasts. World Journal of Microbiology and Biotechnology 18(4), 347–354 (2002)

    Article  Google Scholar 

  32. Urtubia, A., Ricardo Prez-Correa, J., Soto, A., Pszczlkowski, P.: Using data mining techniques to predict industrial wine problem fermentations. Food Control 18(12), 1512–1517 (2007)

    Article  Google Scholar 

  33. Vlasides, S., Ferrier, J., Block, D.: Using historical data for bioprocess optimization: modeling wine characteristics using artificial neural networks and archives process information. Biotechnology and Bioengineering 73(1), 55–68 (2001)

    Article  Google Scholar 

  34. Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A., Masneuf-Pomarede, I.: Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. International Journal of Food Microbiology 125(2), 197–203 (2008); PMID: 18495281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Assar, R., Vargas, F.A., Sherman, D.J. (2012). Reconciling Competing Models: A Case Study of Wine Fermentation Kinetics. In: Horimoto, K., Nakatsui, M., Popov, N. (eds) Algebraic and Numeric Biology. Lecture Notes in Computer Science, vol 6479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28067-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28067-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28066-5

  • Online ISBN: 978-3-642-28067-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics