Skip to main content

Managing Complexity

  • Chapter
  • First Online:
Social Self-Organization

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This contribution summarizes some typical features of complex systems such as non-linear interactions, chaotic dynamics, the “butterfly effect”, phase transitions, self-organized criticality, cascading effects, and power laws. These imply sometimes quite unexpected, counter-intuitive, or even paradoxical behaviors of socioeconomic systems. A typical example is the faster-is-slower effect. Due to their tendency of self-organization, complex systems are often hard to control. Instead of trying to control their behavior, it would often be better to pursue the approach of guided self-organization, i.e. to use the driving forces of the system rather than to fight against them. This is illustrated by the example of hierarchical systems, which need to fulfill certain principles in order to be efficient and robust in an ever-changing environment. We also discuss the important role of fluctuations and heterogeneity for the adaptability, flexibility and robustness of complex systems. The presentation is enriched by a number of examples ranging from decision behavior up to production systems and disaster spreading.

This chapter reprints a previous publication with kind permission of the copyright owner, Springer Publishers. It is requested to cite this work as follows: D. Helbing and S. Lämmer, Managing complexity: An introduction. Pages 1–16 in D. Helbing (ed.) Managing Complexity (Springer, Berlin, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specifically, Le Chatelier’s principle says: “If a chemical system at equilibrium experiences a change in concentration, temperature, or total pressure, the equilibrium will shift in order to minimize that change.”

References

  1. H. Haken, Synergetics (Springer, Berlin, 1977)

    Google Scholar 

  2. G. Ausiello, P. Crescenzi, G. Gambosi, et al., Complexity and Approximation – Combinatorial optimization problems and their approximability properties (Springer, Berlin, 1999)

    Google Scholar 

  3. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Perseus, New York, 2001)

    Google Scholar 

  4. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    Google Scholar 

  5. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  6. S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence of Dynamical Order. Synchronization Phenomena in Complex systems (World Scientific, Singapore, 2004)

    Google Scholar 

  7. D. Helbing, Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067 (2001)

    Google Scholar 

  8. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity Proceedings (1999)

    Google Scholar 

  9. A. Kesting, M. Schönhof, S. Lämmer, M. Treiber, D. Helbing, Decentralized approaches to adaptive traffic control. In Managing Complexity: Insights, Concepts, Applications ed. by D. Helbing (Springer, Berlin, 2008)

    Google Scholar 

  10. D. Helbing, S. Lämmer, Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes [Method to Coordinate Competing Processes or to Control the Transport of Mobile Units within a Network]. Pending patent DE 10 2005 023 742.8 (2005)

    Google Scholar 

  11. R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1985)

    Google Scholar 

  12. J. von Neumann, O. Morgenstern, A. Rubinstein, H.W. Kuhn, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 2004)

    Google Scholar 

  13. T.C. Schelling, The Strategy of Conflict (Harvard University Press, Cambridge, 2006)

    Google Scholar 

  14. D. Helbing, M. Schönhof, H.-U. Stark, J.A. Holyst, How individuals learn to take turns: Emergence of alternating cooperation in a congestion game and the prisoner’s dilemma. Adv. Complex Syst. 8, 87 (2005)

    Google Scholar 

  15. N.S. Glance, B.A. Huberman, The dynamics of social dilemmas. Sci. Am. 270, 76 (1994)

    Google Scholar 

  16. G. Hardin, The Tragedy of the Commons. Science 162, 1243 (1968)

    Google Scholar 

  17. E.C. Zeeman, Catastrophe Theory (Addison-Wesley, London, 1977)

    Google Scholar 

  18. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971)

    Google Scholar 

  19. M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, New York, 1992)

    Google Scholar 

  20. D. Helbing, H. Ammoser, C. Kühnert, Disasters as extreme events and the importance of network interactions for disaster response management, in The Unimaginable and Unpredictable: Extreme Events in Nature and Society, ed. by S. Albeverio, V. Jentsch, H. Kantz (Springer, Berlin, 2005), pp. 319–348

    Google Scholar 

  21. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: An explanation of 1 ∕ f noise. Phys. Rev. Lett. 59, 381 (1987)

    Google Scholar 

  22. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996)

    Google Scholar 

  23. A. Aleksiejuk, J.A. Hołyst, A simple model of bank bankruptcies. Physica A 299(1-2), 198 (2001)

    Google Scholar 

  24. A. Aleksiejuk, J.A. Hołyst, G. Kossinets, Self-organized criticality in a model of collective bank bankruptcies. Int. J. Mod. Phys. C 13, 333 (2002)

    Google Scholar 

  25. S.L. Tubbs, A Systems Approach to Small Group Interaction (McGraw-Hill, Boston, 2003)

    Google Scholar 

  26. H. Arrow, J.E. McGrath, J.L. Berdahl, Small Groups as Complex Systems: Formation, Coordination, Development, and Adaptation (Sage, CA, 2000)

    Google Scholar 

  27. K.-Y. Chen, L.R. Fine, B.A. Huberman, Predicting the Future. Inform. Syst. Front. 5, 47 (2003)

    Google Scholar 

  28. A.S. Mikhailov, Artificial life: an engineering perspective, in Evolution of Dynamical Structures in Complex Systems, ed. by R. Friedrich, A. Wunderlin (Springer, Berlin, 1992), pp. 301–312

    Google Scholar 

  29. F-L. Ulschak, Small Group Problem Solving: An Aid to Organizational Effectiveness (Addison-Wesley Reading Mass., MA, 1981)

    Google Scholar 

  30. J. Gautrais, G. Theraulaz, J.-L. Deneubourg, C. Anderson, Emergent polyethism as a consequence of increased colony size in insect societies. J. Theor. Biol. 215, 363 (2002)

    Google Scholar 

  31. D. Helbing, H. Ammoser, C. Kühnert, Information flows in hierarchical networks and the capability of organizations to successfully respond to failures, crises, and disasters. Physica A 363, 141 (2006)

    Google Scholar 

  32. L.A. Adamic, E. Adar, Friends and neighbors on the web. Social Networks 25(3), 211–230 (2003)

    Google Scholar 

  33. D. Stauffer, P.M.C. de Oliveira, Optimization of hierarchical structures of information flow. Int. J. Mod. Phys. C 17, 1367 (2006)

    Google Scholar 

  34. D.J. Watts, S.H. Strogatz, Collective dynamics of smallworld networks. Nature 393, 440 (1998)

    Google Scholar 

  35. D. Helbing, Quantitative Sociodynamics, in Stochastic Methods and Models of Social Interaction Processes (Kluwer Academic, Dordrecht, 1995)

    Google Scholar 

  36. M. Christen, G. Bongard, A. Pausits, N. Stoop, R. Stoop, Managing autonomy and control in economic systems. In Managing Complexity: Insights, Concepts, Applications ed. by D. Helbing (Springer, Berlin, 2008)

    Google Scholar 

  37. D. Fasold, Optimierung logistischer Prozessketten am Beispiel einer Nassätzanlage in der Halbleiterproduktion. MA thesis, TU Dresden (2001)

    Google Scholar 

  38. D. Helbing, T. Seidel, S. Lämmer, K. Peters, Self-organization principles in supply networks and production systems, in Econophysics and Sociophysics - Trends and Perspectives, ed. by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Wiley, Weinheim, 2006), pp. 535–558

    Google Scholar 

  39. D. Helbing, T. Platkowski, Self-organization in space and induced by fluctuations. Int. J. Chaos Theor. Appl. 5, 47–62 (2000)

    Google Scholar 

  40. D. Helbing, Dynamic decision behavior and optimal guidance through information services: Models and experiments, in Human Behaviour and Traffic Networks, ed. by M. Schreckenberg, R. Selten (Springer, Berlin, 2004), pp. 47–95

    Google Scholar 

  41. D. Helbing, M. Treiber, N.J. Saam, Analytical investigation of innovation dynamics considering stochasticity in the evaluation of fitness. Physical Review E 71, 067101 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helbing, D. (2012). Managing Complexity. In: Helbing, D. (eds) Social Self-Organization. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24004-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24004-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24003-4

  • Online ISBN: 978-3-642-24004-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics