Skip to main content

Dynamic Materialized View Selection Approach for Improving Query Performance

  • Conference paper
Computer Networks and Information Technologies (CNC 2011)

Abstract

Because of the query intensive nature of data warehousing or online analytical processing applications, materialized view is quite promising in efficiently processing the queries and for improving the query performance. It is costly to rematerialize the view each time a change is made to the base tables that might affect it. So, it is desirable to propagate the changes incrementally. Hence, all of the views cannot be materialized due to the view maintenance cost. In this paper, we have developed a dynamic cost model based on threshold level incorporating the factors like view complexity, query access frequency, execution time and update frequency of the base table to select a subset of views from a large set of views to be materialized. A number of algorithms and mathematical equations have been designed and developed to define the dynamic threshold level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 26(1), 65–74 (1997)

    Article  Google Scholar 

  2. Chen, S., Rundensteiner, E.A.: GPIVOT: Efficient Incremental Maintenance of Complex ROLAP Views. In: Proceedings of the 21st International Conference on Data Engineering (ICDE 2005), pp. 552–563 (2005)

    Google Scholar 

  3. Rashid, A.N.M.B., Islam, M.S.: Role of Materialized View Maintenance with PIVOT and UNPIVOT Operators. In: Proceedings of the IEEE International Advance Computing Conference (IACC 2009), Patiala, India, pp. 951–955 (2009)

    Google Scholar 

  4. Zhuge, Y., Molina, H.G., Hammer, J., Widom, J.: View Maintenance in a Warehousing Environment. In: Proceedings of the ACM SIGMOD Conference, San Jose, California, pp. 316–327 (1995)

    Google Scholar 

  5. Gupta, H., Mumick, I.S.: Selection of Views to Materialize Under a Maintenance Cost Constraint. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 453–470. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Zhang, C., Yao, X., Yang, J.: An Evolutionary Approach to Materialized View Selection in a Data Warehouse Environment. IEEE Transactions on Systems, Man and Cybernetics 31(3), 282–293 (2001)

    Article  MathSciNet  Google Scholar 

  7. Lee, M., Hammer, J.: Speeding up Materialized View Selection in Data Warehouses using a Randomized Algorithm. International Journal of Cooperative Information Systems 10(3), 327–353 (2001)

    Article  Google Scholar 

  8. Yu, J.X., Yao, X., Choi, C., Gou, G.: Materialized View Selection as Constrained Evolutionary Optimization. IEEE Transactions on Systems, Man and Cybernetics, part c 33(4), 458–467 (2003)

    Article  Google Scholar 

  9. Wang, Z., Zhang, D.: Optimal Genetic View Selection Algorithm under Space Constraint. International Journal of Information Technology 11(5), 44–51 (2005)

    Google Scholar 

  10. Ashadevi, B., Balasubramanian, R.: Optimized Cost Effective Approach for Selection of Materialized Views in Data Warehousing. Journal of Computer Science and Technology 9(1), 21–26 (2009)

    Google Scholar 

  11. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chili, pp. 487–499 (1994)

    Google Scholar 

  12. Shafey, M.A.L.: Performance Evaluation of Database Design Approaches for Object Relational Data Management. M. Sc. Engg. Thesis. Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rashid, A.N.M.B., Islam, M.S., Hoque, A.S.M.L. (2011). Dynamic Materialized View Selection Approach for Improving Query Performance. In: Das, V.V., Stephen, J., Chaba, Y. (eds) Computer Networks and Information Technologies. CNC 2011. Communications in Computer and Information Science, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19542-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19542-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19541-9

  • Online ISBN: 978-3-642-19542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics