Skip to main content

An Insight into the Bacterial Biogenesis of Silver Nanoparticles, Industrial Production and Scale-up

  • Chapter
  • First Online:
Book cover Metal Nanoparticles in Microbiology

Abstract

Silver nanoparticles have revolutionized the whole world with numerous applications in various fields including imaging to applications in medicine. For the synthesis of silver nanoparticles bottom approaches are very easy to perform and the size distribution can be easily maintained. Biologically synthesized silver nanoparticles are extremely stable without the use of any outside stabilizer, with an added advantage of synthesizing accurate and precise sized nanoparticles besides the use of nontoxic chemicals and stringent conditions. Other advantages include easy manipulations of the genetic material for enhanced synthesis of nanoparticles and maximum utilization of the raw materials as biological process usually goes to completion. Although several reports are available for the mechanism of synthesis of nanoparticles they report the intermediate steps and not the complete mechanism. So a screening over a genomic library constructed from those organisms synthesizing silver nanoparticles would give a better idea of the steps involved in the silver nanoparticle synthesis. Primarily silver nanoparticles are synthesized by AgNO3 that aids the synthesis of silver nanoparticles at lower concentrations. But at higher concentrations it is highly toxic to the treated organism. This in fact makes the possibility of synthesis of silver nanoparticles to be a protective mechanism rather than a usual bioprocess. This requires a careful design of medium and optimization of the process for the maximum synthesis of nanoparticles. Response surface methodology can be practically applied to various process optimization processes and the final equation obtained can be used for the scaling up of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad RS, Sara M, Hamid RS, Hossein J, Ashraf-Asadat N (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  Google Scholar 

  • Anil Kumar S, Abyaneh MK, Gosavi Sulabha SW, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  PubMed  CAS  Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

    Article  PubMed  Google Scholar 

  • Balaji DS, Basavaraja S, Bedre Mahesh D, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides. Colloids Surf B 68:88–92

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Gobinda PS, Priyanka S, Santanu P, Ajay M (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physico Chem Eng Asp 348:212–216

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  • Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1893–1898

    CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127:1502–1518

    PubMed  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Internal Microbiol 3:3–8

    CAS  Google Scholar 

  • Chu CS, McManus AT, Pruitt BA, Mason AD (1988) Therapeutic effects of silver nylon dressing with weak direct current on Pseudomonas aeruginosa infected burn wounds. J Trauma 28:1488–1492

    Article  PubMed  CAS  Google Scholar 

  • Clark DS (1994) Can immobilization be exploited to modify enzyme activity? Trends Biotechnol 12(11):439–443

    Article  PubMed  CAS  Google Scholar 

  • Deitch EA, Marin A, Malakanov V, Albright JA (1987) Silver nylon cloth: in vivo and in vitro evaluation of antimicrobial activity. J Trauma 27:301–304

    Article  PubMed  CAS  Google Scholar 

  • Doyle RJ, Matthews TH, Streips UN (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J Bacteriol 143:471–480

    PubMed  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves O, Souza G (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanotechnol 3:8

    Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 10:135

    Article  Google Scholar 

  • Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B 75(1):175–178

    Article  CAS  Google Scholar 

  • Fu JK, Zhang WD, Liu YY, Lin ZY, Yao BX, Weng SZ (1999) Characterization of adsorption and reduction of noble metal ions by bacteria. Chin J Chem Univ 20:1452–1454

    CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 3:123–129

    Google Scholar 

  • Gade A, Ingle A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  Google Scholar 

  • Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B 74(1):191–195

    Article  CAS  Google Scholar 

  • Gautam AS, Sharma A (2002) Involvement of caspase-3 like protein in rapid cell death of Xanthomonas. Mol Microbiol 44:393–401

    Article  PubMed  CAS  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009a) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350

    Article  PubMed  CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009b) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74(1):328–335

    Article  CAS  Google Scholar 

  • Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from silver mine. J Bacteriol 158:389–392

    PubMed  CAS  Google Scholar 

  • Hanauer M, Pierrat S, Zins I, Lotz A, Solnnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(9):2881–2885

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104.1–105104.11

    Google Scholar 

  • Huang J, Lin L, Li Q, Sun D, Wang Y, Lu Y, He N, Yang K, Yang X, Wang H, Wang W, Lin W (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of Sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47(16):6081–6090

    Article  CAS  Google Scholar 

  • Ingle AP, Gade AK, Pierrat S, Sönnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Mohd B, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–3

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Banumathi E, Pandian SBRK, Deepak V, Muniyandi J, Eom SH (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B 73:51–7

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B 77(2):257–262

    Article  CAS  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11(5):1075–1085

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71(1):133–137

    Article  CAS  Google Scholar 

  • Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) The formation of nano-scale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093

    Article  PubMed  CAS  Google Scholar 

  • Margraff HW, Covey TH (1977) A trial of silver–zinc-allantoine in the treatment of leg ulcers. Arch Surg 112:699–704

    Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisak S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  PubMed  CAS  Google Scholar 

  • Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya – a first report. J Plant Biochem Biotechnol 18(1):83–86

    CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008a) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103.1–075103.7

    Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J (2008b) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:7

    Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    PubMed  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456

    PubMed  CAS  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Viswanathan P, Gurunathan S (2010) Mechanism of bactericidal activity of silver nitrate – a concentration dependent bi-functional molecule. Braz J Microbiol 41:805–809

    Article  CAS  Google Scholar 

  • Parikh RY, Singh S, Prasad BL, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella. sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11(7):1811–1815

    Article  CAS  Google Scholar 

  • Raut R, Jaya SL, Niranjan DK, Vijay BM, Kashid S (2009) Photosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci 5(1):117–122

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, AA Nur yasumira (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6:61–70

    CAS  Google Scholar 

  • Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5(3):247–253

    Article  PubMed  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504

    Article  PubMed  CAS  Google Scholar 

  • Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3(2):138–143

    CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  PubMed  CAS  Google Scholar 

  • Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnol 7:8

    Article  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–34

    Article  PubMed  CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, Ha DV, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi N (1974) Proceedings of International Conference on Precision Engineering (ICPE), Tokyo, Japan

    Google Scholar 

  • Tanja K, Ralph J, Eva O, Claes-Göran G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611–13614

    Article  Google Scholar 

  • Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B 75(1): 335–341

    Article  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40

    Article  PubMed  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane PR, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 66:1413–1418

    Article  Google Scholar 

  • Vivekanandhan S, Misra M, Mohanty AK (2009) Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties. J Nanosci Nanotechnol 9(12):6828–6833

    PubMed  CAS  Google Scholar 

  • Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for the award of Senior Research Fellowship (Reference No. 9/10/2(0001)/2k10-EMR-I (DV); 9/10/2(0003)/2k10-EMR-I (KK); 9/10/2(0002)/2k10-EMR-I(SRKP)). Prof. G. Sangiliyandi is thankful to CSIR project grant (no 37/0347) which helped him in the basic research of silver nanoparticles synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangiliyandi Gurunathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deepak, V., Kalishwaralal, K., Pandian, S.R.K., Gurunathan, S. (2011). An Insight into the Bacterial Biogenesis of Silver Nanoparticles, Industrial Production and Scale-up. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_2

Download citation

Publish with us

Policies and ethics