Skip to main content

Incremental Sampling-Based Algorithms for a Class of Pursuit-Evasion Games

  • Chapter
Algorithmic Foundations of Robotics IX

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 68))

Abstract

Pursuit-evasion games have been used for modeling various forms of conflict arising between two agents modeled as dynamical systems. Although analytical solutions of some simple pursuit-evasion games are known, most interesting instances can only be solved using numerical methods requiring significant offline computation. In this paper, a novel incremental sampling-based algorithm is presented to compute optimal open-loop solutions for the evader, assuming worst-case behavior for the pursuer. It is shown that the algorithm has probabilistic completeness and soundness guarantees. As opposed to many other numerical methods tailored to solve pursuit-evasion games, incremental sampling-based algorithms offer anytime properties, which allow their real-time implementations in online settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isaacs, R.: Differential Games. Wiley, Chichester (1965)

    MATH  Google Scholar 

  2. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. Academic Press, London (1995)

    MATH  Google Scholar 

  3. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control 50(7), 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  4. Lachner, R., Breitner, M.H., Pesch, H.J.: Three dimensional air combat: Numerical solution of complex differential games. In: Olsder, G.J. (ed.) New Trends in Dynamic Games and Applications, pp. 165–190. Birkhäuser, Basel (1995)

    Google Scholar 

  5. Vanek, O., Bosansky, B., Jakob, M., Pechoucek, M.: Transiting areas patrolled by a mobile adversary. In: Proc. IEEE Conf. on Computational Intelligence and Games (2010)

    Google Scholar 

  6. Simaan, M., Cruz, J.B.: On the Stackelberg strategy in nonzero-sum games. Journal of Optimization Theory and Applications 11(5), 533–555 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bardi, M., Falcone, M., Soravia, P.: Numerical methods for pursuit-evasion games via viscosity solutions. In: Barti, M., Raghavan, T.E.S., Parthasarathy, T. (eds.) Stochastic and Differential Games: Theory and Numerical Methods. Birkhäuser, Basel (1999)

    Google Scholar 

  8. Ehtamo, H., Raivio, T.: On applied nonlinear and bilevel programming for pursuit-evasion games. Journal of Optimization Theory and Applications 108, 65–96 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Breitner, M.H., Pesch, H.J., Grimm, W.: Complex differential games of pursuit-evasion type with state constraints, part 1: Necessary conditions for optimal open-loop strategies. Journal of Optimization Theory and Applications 78, 419–441 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Breitner, M.H., Pesch, H.J., Grim, W.: Complex differential games of pursuit-evasion type with state constraints, part 2: Numerical computation of optimal open-loop strategies. Journal of Optimization Theory and Applications 78, 444–463 (1993)

    Google Scholar 

  11. Russell, R.D., Shampine, L.F.: A collocation method for boundary value problems. Numerische Mathematik 19(1), 1–28 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. van Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Annals of Operations Research 37, 357–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Surfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  14. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  15. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  16. Petti, S., Fraichard, Th.: Safe motion planning in dynamic environments. In: Proc. Int. Conf. on Intelligent Robots and Systems (2005)

    Google Scholar 

  17. Hsu, D., Kindel, R., Latombe, J., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. International Journal of Robotics Research 21(3), 233–255 (2002)

    Article  Google Scholar 

  18. Reif, J., Sharir, M.: Motion planning in presence of moving obstacles. In: Proceedings of the 25th IEEE Symposium FOCS (1985)

    Google Scholar 

  19. Erdmann, M., Lozano-Perez, T.: On multiple moving objects. Algorithmica 2, 477–521 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sutner, K., Maass, W.: Motion planning among time dependent obstacles. Acta Informatica 26, 93–122 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fujimura, K., Samet, H.: Planning a time-minimal motion among moving obstacles. Algorithmica 10, 41–63 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Farber, M., Grant, M., Yuzvinski, S.: Topological complexity of collision free motion, planning algorithms in the presence of multiple moving obstacles. In: Farber, M., Ghrist, G., Burger, M., Koditschek, D. (eds.) Topology and Robotics, pp. 75–83. American Mathematical Society, Providence (2007)

    Google Scholar 

  23. Zucker, M., Kuffner, J., Branicky, M.: Multipartite RRTs for rapid replanning in dynamic environments. In: IEEE Conference on Robotics and Automation (ICRA) (2007)

    Google Scholar 

  24. van der Berg, J., Overmars, M.: Planning the shortest safe path amidst unpredictably moving obstacles. In: Workshop on Algorithmic Foundations of Robotics VII (2008)

    Google Scholar 

  25. Parsons, T.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs, pp. 426–441 (1978)

    Google Scholar 

  26. Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion with limited visibility. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, pp. 1060–1069. Society for Industrial and Applied Mathematics (2004)

    Google Scholar 

  27. Adler, M., Räcke, H., Sivadasan, N., Sohler, C., Vöocking, B.: Randomized pursuit-evasion in graphs. Combinatorics. Probability and Computing 12(03), 225–244 (2003)

    Article  MATH  Google Scholar 

  28. Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region. SIAM Journal on computing 21, 863 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gerkey, B., Thrun, S., Gordon, G.: Clear the building: Pursuit-evasion with teams of robots. In: Proceedings AAAI National Conference on Artificial Intelligence (2004)

    Google Scholar 

  30. Isler, V., Kannan, S., Khanna, S.: Locating and capturing an evader in a polygonal environment. Algorithmic Foundations of Robotics VI, 251–266 (2005)

    Google Scholar 

  31. Isler, V., Sun, D., Sastry, S.: Roadmap based pursuit-evasion and collision avoidance. In: Robotics: Science and Systems Conference (2005)

    Google Scholar 

  32. Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  33. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. International Journal of Robotics Research 20(5), 378–400 (2001)

    Article  Google Scholar 

  34. Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, J.P.: Real-time motion planning with applications to autonomous urban driving. IEEE Transactions on Control Systems 17(5), 1105–1118 (2009)

    Article  Google Scholar 

  35. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. In: Robotics: Science and Systems, RSS (2010)

    Google Scholar 

  36. Dean, T., Boddy, M.: Analysis of time-dependent planning. In: Proceedings of AAAI (1989)

    Google Scholar 

  37. Zilberstein, S., Russell, S.: Approximate Reasoning Using Anytime Algorithms. In: Imprecise and Approximate Computation, vol. 318, pp. 43–62. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  38. Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)

    Google Scholar 

  39. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: IEEE Conf. on Decision and Control, Atlanta, GA (2010)

    Google Scholar 

  40. Grimmett, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karaman, S., Frazzoli, E. (2010). Incremental Sampling-Based Algorithms for a Class of Pursuit-Evasion Games. In: Hsu, D., Isler, V., Latombe, JC., Lin, M.C. (eds) Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17452-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17452-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17451-3

  • Online ISBN: 978-3-642-17452-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics