Skip to main content

Using Lie Group Symmetries for Fast Corrective Motion Planning

  • Chapter
Algorithmic Foundations of Robotics IX

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 68))

Abstract

For a mechanical system it often arises that its planned motion will need to be corrected either to refine an approximate plan or to deal with disturbances. This paper develops an algorithmic framework allowing for fast and elegant path correction for nonholonomic underactuated systems with Lie group symmetries, which operates without the explicit need for control strategies. These systems occur frequently in robotics, particularly in locomotion, be it ground, underwater, airborne, or surgical domains. Instead of reintegrating an entire trajectory, the method alters small segments of an initial trajectory in a consistent way so as to transform it via symmetry operations. This approach is demonstrated for the cases of a kinematic car and for flexible bevel tip needle steering, showing a prudent and simple, yet computationally tractable, trajectory correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloch, A.M.: Nonholonomic Mechanics and Control. In: Interdisciplinary Applied Mathematics, vol. 24. Springer, New York (2003)

    Google Scholar 

  2. Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: An integrated package for nonlinear optimization. In: Large Scale Nonlinear Optimization, pp. 35–59. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Canny, J.F.: The complexity of robot motion planning. MIT Press, Cambridge (1988)

    Google Scholar 

  4. Cheng, P., Frazzoli, E., LaValle, S.M.: Improving the performance of sampling-based motion planning with symmetry-based gap reduction. IEEE Transactions on Robotics 24(2), 488–494 (2008)

    Article  Google Scholar 

  5. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 384–389 (1990)

    Google Scholar 

  6. Kelly, A., Nagy, B.: Reactive nonholonomic trajectory generation via parametric optimal control. The International Journal of Robotics Research 22(7-8), 583–601 (2003)

    Article  Google Scholar 

  7. Kobilarov, M., Desbrun, M., Marsden, J.E., Sukhatme, G.S.: A discrete geometric optimal control framework for systems with symmetries. In: Proceedings of Robotics: Science and Systems, Atlanta, GA, USA (2007)

    Google Scholar 

  8. Koon, W.S., Marsden, J.E.: Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM Journal on Control and Optimization 35(3), 901–929 (1995)

    Article  MathSciNet  Google Scholar 

  9. Lamiraux, F., Bonnafous, D., Lefebvre, O.: Reactive path deformation for nonholonomic mobile robots. IEEE Transactions on Robotics 20(6), 967–977 (2004)

    Article  Google Scholar 

  10. Latombe, J.C.: Robot Motion Planning. Kluwer, Boston (1991)

    Google Scholar 

  11. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  12. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  13. Ollero, A., Heredia, G.: Stability analysis of mobile robot path tracking. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 461–466 (1995)

    Google Scholar 

  14. Ostrowski, J.P.: Computing reduced equations for robotic systems with constraintsand symmetries. IEEE Transactions on Robotics and Automation 15(1), 111–123 (1999)

    Article  MathSciNet  Google Scholar 

  15. Park, W., Reed, K.B., Chirikjian, G.S.: Estimation of model parameters for steerable needles. In: IEEE International Conference on Robotics and Automation, pp. 3703–3708 (2010)

    Google Scholar 

  16. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Tech. rep., Carnegie Mellon University Pittsburgh (1994)

    Google Scholar 

  17. Webster III, R.J., Cowan, N.J., Chirikjian, G.S., Okamura, A.M.: Nonholonomic modeling of needle steering. In: Proc. 9th International Symposium on Experimental Robotics (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seiler, K., Singh, S.P.N., Durrant-Whyte, H. (2010). Using Lie Group Symmetries for Fast Corrective Motion Planning. In: Hsu, D., Isler, V., Latombe, JC., Lin, M.C. (eds) Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17452-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17452-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17451-3

  • Online ISBN: 978-3-642-17452-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics