Skip to main content

Sources, Dynamics and Management of Phosphorus in a Southern Baltic Estuary

  • Chapter
  • First Online:
The Baltic Sea Basin

Abstract

Today, phosphorus is regarded as the key nutrient for Baltic Sea eutrophication management. Major sources are large rivers like the Oder, Vistula and Daugava in the southern Baltic region. Before entering the Baltic Sea, these rivers discharge their nutrient load into coastal estuaries, bays and lagoons. The quantitative role of these coastal waters, with restricted water exchange, for Baltic Sea management is very important, but not well known. Taking the Oder/Odra estuary as an example, we analyse the long-term pollution history and the major sources for phosphorus and calculate a phosphorus budget, with special focus on anoxic phosphorus release from sediments. The budget shows that due to internal eutrophication in July 2000 the lagoon became a major temporary source of phosphorus for the Baltic Sea. A phosphorus emission reduction scenario, taking into account diffuse and point sources in the entire Oder/Odra river basin, is presented. Phosphorus load reductions have only limited effect on the eutrophic state of the lagoon. The lagoon is more sensitive to nitrogen load reductions. Therefore, both elements have to be taken into account in measures to reduce eutrophication.

† H. Behrendt (Deceased)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behrendt H, Dannowski R (eds) (2005) Nutrients and heavy metals in the Odra river system. Weißensee Verlag, Berlin

    Google Scholar 

  • Behrendt H, Opitz D, Kolanek A, Korol R, Stronska M (2008) Changes of the nutrient loads of the Odra River during the last century – their causes and consequences. Journal of Water Land Development 12:127–144

    Google Scholar 

  • Boesch D, Hecky R, O’Melia C, Schindler D, Seitzinger S (2006) Eutrophication of Swedish seas. Swedish Environmental Protection Agency, Naturvårdsverket, Stockholm, Sweden, ISBN 91-620-5509-7

    Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  Google Scholar 

  • Elmgren R, Larsson U (2001) Eutrophication in the Baltic Sea area. In: Bodungen B, Turner RK (eds) Science and integrated coastal management. Dahlem University Press, Berlin, pp 15–35

    Google Scholar 

  • Elmgren R (2001) Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30:222–229

    Google Scholar 

  • Helsinki Commission (Helcom) (2005) Airborne nitrogen loads to the Baltic Sea. Report, pp 24

    Google Scholar 

  • HELCOM (2007) Baltic Sea action plan, http://www.helcom.fi/BSAP/ActionPlan/en_GB/ActionPlan/. Accessed 26 November 2010

  • Lampe R (1999) The Odra estuary as a filter and transformation area. Acta hydrochimica et hydrobiologica 27:292–297

    Article  Google Scholar 

  • Leipe T, Eidam J, Lampe R, Meyer H, Neumann T, Odsadczuk A, Janke W, Puff T, Blanz T, Gingele FX, Dannenberger D, Witt G (1998) Das Oderhaff – Beiträge zur Rekonstruktion der holozänen geologischen und anthropogenen Beeinflussung des Oder-Ästuares. Meereswiss. Berichte No. 28, 61 S

    Google Scholar 

  • Meyer H, Lampe R (1999) The restricted buffer capacity of a South Baltic estuary – the Oder estuary. Limnologica 29:242–248

    Google Scholar 

  • Neumann T (2000) Towards a 3D-ecosystem model of the Baltic Sea. Journal of Marine System 25(3–4):405–419

    Article  Google Scholar 

  • Neumann T, Fennel W, Kremp C (2002) Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment. Global Biogeochemical Cycles 16(7-1):7–19

    Google Scholar 

  • Neumann T, Schernewski G (2008) Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model. Journal of Marine System 74:592–602

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (2000) MOM 3.0 manual. Technical report, Geophysical Fluid Dynamics Laboratory

    Google Scholar 

  • Schernewski G (1999) Der Stoffhaushalt von Seen: Bedeutung zeitlicher Variabilität und räumlicher Heterogeniät von Prozessen sowie des Betrachtungsmaßstabs. Marine Science Reports 36:275

    Google Scholar 

  • Schernewski G, Wielgat M (2001) Eutrophication of the shallow Szczecion Lagoon (Baltic Sea): modeling, management and the impact of weather. In: Brebbia CA (ed) Coastal engineering: computer modelling of seas and coastal regions. WIT Press, Southampton, pp 87–98

    Google Scholar 

  • Schindler DW, Hecky RE (2009) Eutrophication: more nitrogen data needed. Science 324:721

    Article  Google Scholar 

  • Wielgat M, Witek Z (2004) A dynamic box model of the Szczecin Lagoon nutrient cycling and its first application to the calculation of the nutrient budget. In: Schernewski G, Dolch T (eds) The Oder estuary, against the background of the Water Framework Directive. Marine Science Reports 57:99–125

    Google Scholar 

  • Wulff F, Bonsdorff E, Gren I-M, Johansson S, Stigebrandt A (2001) Giving advice on cost effective measurements for a cleaner Baltic Sea: a challenge for science. Ambio 30:254–259

    Google Scholar 

Download references

Acknowedgements

This chapter is dedicated to Horst Behrendt, who died, much too early, in December 2008. The work has been supported by the projects IKZM-Oder III (Federal Ministry for Education and Research; 03F0403A & 03F0465A) and BONUS+ project AMBER (Assessment and Modelling Baltic Ecosystem Response). Data have been kindly supplied by the State Agency of Environment, Protection of Nature and Geology Mecklenburg-Vorpommern (LUNG). Supercomputing power was provided by HLRN (Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Schernewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schernewski, G., Neumann, T., Behrendt†, H. (2011). Sources, Dynamics and Management of Phosphorus in a Southern Baltic Estuary. In: Harff, J., Björck, S., Hoth, P. (eds) The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17220-5_18

Download citation

Publish with us

Policies and ethics