Skip to main content

Adiabatic Spin Pumping with Quantum Dots

  • Chapter
  • First Online:
  • 752 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 820))

Abstract

Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Spin pumping in interacting nanowires was first discussed in Ref. [27] and further extended in Ref. [28].

  2. 2.

    Here for convenience, we have adopted the same units for charge and spin currents.

  3. 3.

    Electron densities are usually around 1011 cm?2 in high-quality GaAs wafers.

  4. 4.

    It is not too restrictive to assume that W n? does not depend on the incoming or outgoing particle energy. The pumping current will still depend on the chemical potential in the leads through the Fermi distribution functions and the fact that W n? depends on the dot state through n.

  5. 5.

    Since charge is not accumulated during the pumping cycle, all current that flows from one of the reservoirs enters the other: I left =  ? I right

References

  1. Kastner, M.A.: Rev. Mod. Phys. 64, 849 (1992)

    Article  ADS  Google Scholar 

  2. Marcus, C.M., Rimberg, A.J., Westervelt, R.M., Hopkins, P.F., Gossard, A.C.: Phys. Rev. Lett. 69, 506 (1992)

    Article  ADS  Google Scholar 

  3. Chang, A.M., Baranger, H.U., Pfeiffer, L.N., West, K.W., Chang, T.Y. : Phys. Rev. Lett. 76, 1695 (1996)

    Article  ADS  Google Scholar 

  4. Kouwenhoven, L.P., et al.: In: Kouwenhoven, L.P., Schön, G., Sohn, L.L. (eds.) Nato ASI Conference Proceedings. Kluwer, Dordrecht (1997)

    Google Scholar 

  5. Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., Abusch-Magder, D., Meirav, U., Kastner, M.A.: Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  6. Cronenwett, S.M., Oosterkamp, T.H., Kouwenhoven, L.P.: Science 281, 540 (1998)

    Article  ADS  Google Scholar 

  7. Switkes, M., Marcus, C.M., Campman, K., Gossard, A.C.: Science 283, 1905 (1999)

    Article  ADS  Google Scholar 

  8. Thouless, D.J.: Phys. Rev. B 27, 6083 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. Altshuler, B.L., Glazman, L.I.: Science 283, 1864 (1999)

    Article  Google Scholar 

  10. Spivak, B., Zhou, F., Beal Monod, M.T.: Phys. Rev. B 51, 13226 (1995)

    Article  ADS  Google Scholar 

  11. Brouwer, P.W.: Phys. Rev. B 58, R10135 (1998)

    Article  ADS  Google Scholar 

  12. Aleiner, I.L., Andreev, A.V.: Phys. Rev. Lett. 81, 1286 (1998)

    Article  ADS  Google Scholar 

  13. Zhou, F., Spivak, B., Altshuler, B.L.: Phys. Rev. Lett. 82, 608 (1999)

    Article  ADS  Google Scholar 

  14. Wolf, S.A., et al.: Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  15. Zutic, I., Fabian, J., Das Sarma, S.: Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  16. Büttiker, M., Prêtre, A., Thomas, H.: Z. Phys. B 94, 196 (1994)

    Article  Google Scholar 

  17. Avrom, J.E., Elgart, A., Graf, G.M., Sadum, L.: J. Stat. Phys. 116, 425 (2004)

    Article  ADS  Google Scholar 

  18. Brouwer, P.W.: Phys. Rev. B 63, 121303(R) (2001)

    Article  ADS  Google Scholar 

  19. Beenakker, C.W.J.: Rev. Mod. Phys. 69, 731 (1997)

    Article  ADS  Google Scholar 

  20. Cremers, J.N.H.J., Brouwer, P.W.: Phys. Rev. B 65, 115333 (2002)

    Article  ADS  Google Scholar 

  21. Martínez-Mares M., Lewenkopf C.H., Mucciolo E.R.: Phys. Rev. B 69, 085301 (2004)

    Article  ADS  Google Scholar 

  22. Aleiner, I.L., Altshuler, B.L., Kamenev, A.: Phys. Rev. B 62, 10373 (2000)

    Article  ADS  Google Scholar 

  23. Governale, M., Taddei, F., Fazio, R.: Phys. Rev. B 68, 155324 (2003)

    Article  ADS  Google Scholar 

  24. Sharma, P., Brouwer, B.W.: Phys. Rev. Lett. 91, 166801 (2004)

    Article  ADS  Google Scholar 

  25. Mucciolo, E.R., Chamon, C., Marcus, C.M.: Phys. Rev. Lett. 89, 146802 (2002)

    Article  ADS  Google Scholar 

  26. Watson, S.K., Potok, R.M., Marcus, C.M., Umansky, V.: Phys. Rev. Lett. 91, 258301 (2003)

    Article  ADS  Google Scholar 

  27. Sharma, P., Chamon, C.: Phys. Rev. Lett. 87, 096401 (2001)

    Article  ADS  Google Scholar 

  28. Citro, R., Andrei, N., Niu, Q.: Phys. Rev. B 68 165312 (2003)

    Article  ADS  Google Scholar 

  29. Simons, B.D., Altshuler, B.L.: In Mesoscopic Quantum Physics, Eds. E. Akkermans, G. Montambaux, J.-L. Pichard, J. Zinn-Justin (Elsevier, 1994)

    Google Scholar 

  30. Vavilov, M.G., Ambegaokar, V., Aleiner, I.L.: Phys. Rev. B 63, 195313 (2001)

    Article  ADS  Google Scholar 

  31. Simons, B.D., Altshuler, B.L.: Phys. Rev. Lett. 70, 4063 (1993)

    Article  ADS  Google Scholar 

  32. Folk, J.A., Potok, R.M., Marcus, C.M., Umansky, V.: Science 299, 679 (2003)

    Article  ADS  Google Scholar 

  33. van Wees, B.J., et al.: Phys. Rev. Lett. 60, 848 (1988)

    Article  ADS  Google Scholar 

  34. Büttiker, M.: Phys. Rev. B 33, 3020 (1986)

    Article  ADS  Google Scholar 

  35. Kikkawa, J.M., Awschalom, D.D.: Phys. Rev. Lett. 80, 4313 (1998)

    Article  ADS  Google Scholar 

  36. Brouwer, P.W., Aleiner, I.L.: Phys. Rev. Lett. 82, 390 (1999)

    Article  ADS  Google Scholar 

  37. Aleiner, I.L., Brouwer, P.W., Glazman, L.I.: Phys. Rep. 358, 309 (2002)

    Article  ADS  Google Scholar 

  38. Splettstoesser, J., Governale, M., König, J., Fazio, R.: Phys. Rev. Lett. 95, 246803 (2005)

    Article  ADS  Google Scholar 

  39. Sela, E., Oreg, Y.: Phys. Rev. B 71(7), 075323 (2005)

    Article  ADS  Google Scholar 

  40. Feinberg, D., Simon, P.: Appl. Phys. Lett. 85, 4247 (2004)

    Article  ADS  Google Scholar 

  41. Blaauboer, M., Fricot, C.M.L.: Phys. Rev. B 71, 041303 (2005)

    Article  ADS  Google Scholar 

  42. Cota, E., Aguado, R., Platero, G.: Phys. Rev. Lett. 94, 107202 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to C. Chamon, C. Lewenkopf, C. Marcus, and M. Martínez-Mares for fruitful collaborations on this subject. The material presented here is based on published work we have co-authored. I also would like to thank P. Brouwer, B. Reulet, P. Sharma, and S. Watson for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo R. Mucciolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mucciolo, E.R. (2010). Adiabatic Spin Pumping with Quantum Dots. In: Vojta, M., Röthig, C., Schön, G. (eds) CFN Lectures on Functional Nanostructures - Volume 2. Lecture Notes in Physics, vol 820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14376-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14376-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14375-5

  • Online ISBN: 978-3-642-14376-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics