Skip to main content

Contention Resolution under Selfishness

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Abstract

In many communications settings, such as wired and wireless local-area networks, when multiple users attempt to access a communication channel at the same time, a conflict results and none of the communications are successful. Contention resolution is the study of distributed transmission and retransmission protocols designed to maximize notions of utility such as channel utilization in the face of blocking communications.

An additional issue to be considered in the design of such protocols is that selfish users may have incentive to deviate from the prescribed behavior, if another transmission strategy increases their utility. The work of Fiat et al. [8] addresses this issue by constructing an asymptotically optimal incentive-compatible protocol. However, their protocol assumes the cost of any single transmission is zero, and the protocol completely collapses under non-zero transmission costs.

In this paper, we treat the case of non-zero transmission cost c. We present asymptotically optimal contention resolution protocols that are robust to selfish users, in two different channel feedback models. Our main result is in the Collision Multiplicity Feedback model, where after each time slot, the number of attempted transmissions is returned as feedback to the users. In this setting, we give a protocol that has expected cost 2n + clogn and is in o(1)-equilibrium, where n is the number of users.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, N.: The ALOHA system: Another alternative for computer communications. In: Proceedings of the Fall Joint Computer Conference, November 17-19, pp. 281–285. ACM, New York (1970)

    Google Scholar 

  2. Altman, E., El Azouzi, R., Jiménez, T.: Slotted aloha as a game with partial information. Comput. Netw. 45(6), 701–713 (2004)

    Article  MATH  Google Scholar 

  3. Altman, E., Barman, D., Benslimane, A., El Azouzi, R.: Slotted aloha with priorities and random power. In: Proc. IEEE Infocom (2005)

    Google Scholar 

  4. Auletta, V., Moscardelli, L., Penna, P., Persiano, G.: Interference games in wireless networks. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 278–285. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bender, M., Farach-Colton, M., He, S., Kuszmaul, B., Leiserson, C.: Adversarial contention resolution for simple channels. In: SPAA 2005, pp. 325–332. ACM, New York (2005)

    Chapter  Google Scholar 

  6. Capetanakis, J.: Generalized tdma: The multi-accessing tree protocol. IEEE Transactions on Communications 27(10), 1476–1484 (1979)

    Article  Google Scholar 

  7. Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory 25(5), 505–515 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fiat, A., Mansour, Y., Nadav, U.: Efficient contention resolution protocols for selfish agents. In: SODA 2007, pp. 179–188. SIAM, Philadelphia (2007)

    Google Scholar 

  9. Georgiadis, L., Papantoni-Kazakos, P.: A collision resolution protocol for random access channels with energy detectors. IEEE Transactions on Communications COM-30, 2413–2420 (1982)

    Article  MATH  Google Scholar 

  10. Geréb-Graus, M., Tsantilas, T.: Efficient optical communication in parallel computers. In: SPAA 1992, pp. 41–48. ACM, New York (1992)

    Chapter  Google Scholar 

  11. Goldberg, L.A., MacKenzie, P.D.: Analysis of practical backoff protocols for contention resolution with multiple servers. J. Comput. Syst. Sci. 58(1), 232–258 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldberg, L.A., Mackenzie, P.D., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. J. ACM 47(6), 1048–1096 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenberg, A., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. J. ACM 32(3), 589–596 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hayes, J.: An adaptive technique for local distribution. IEEE Transactions on Communications 26(8), 1178–1186 (1978)

    Article  Google Scholar 

  15. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Ma, R.T., Misra, V., Rubenstein, D.: Modeling and analysis of generalized slotted-aloha mac protocols in cooperative, competitive and adversarial environments. In: ICDCS 2006, Washington, DC, USA, p. 62. IEEE, Los Alamitos (2006)

    Google Scholar 

  17. MacKenzie, A., Wicker, S.: Stability of multipacket slotted aloha with selfish users and perfect information (2003)

    Google Scholar 

  18. MacKenzie, P.D., Plaxton, C.G., Rajaraman, R.: On contention resolution protocols and associated probabilistic phenomena. J. ACM 45(2), 324–378 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Menache, I., Shimkin, N.: Efficient rate-constrained nash equilibrium in collision channels with state information. In: INFOCOM 2008, pp. 403–411 (2008)

    Google Scholar 

  20. Pippenger, N.: Bounds on the performance of protocols for a multiple-access broadcast channel. IEEE Transactions on Information Theory 27(2), 145–151 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. Technical report, Weizmann Science Press of Israel, Jerusalem, Israel, Israel (1995)

    Google Scholar 

  22. Roberts, L.: Aloha packet system with and without slots and capture. SIGCOMM Comput. Commun. Rev. 5(2), 28–42 (1975)

    Article  Google Scholar 

  23. Ruszinko, M., Vanroose, P.: How an erdöos-rényi-type search approach gives an explicit code construction of rate 1 for random access with multiplicity feedback. IEEE Transactions on Information Theory 43(1), 368–372 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Srivastava, V., Neel, J.A., MacKenzie, A.B., Hicks, J.E., DaSilva, L.A., Reed, J.H., Gilles, R.P.: Using game theory to analyze wireless ad hoc networks. IEEE Communications Surveys and Tutorials 7(5), 46–56 (2005)

    Article  Google Scholar 

  25. Tsybakov, B.: Resolution of a conflict of known multiplicity. Problemy Peredachi Informatsii (1980)

    Google Scholar 

  26. Tsybakov, B.S., Mikhailov, V.A.: Free synchronous packet access in a broadcast channel with feedback. Problems of Information Transmission 14(4), 259–280 (1978)

    MathSciNet  Google Scholar 

  27. Wang, D., Comaniciu, C., Tureli, U.: Cooperation and fairness for slotted aloha. Wirel. Pers. Commun. 43(1), 13–27 (2007)

    Article  Google Scholar 

  28. Zheng, D., Ge, W., Zhang, J.: Distributed opportunistic scheduling for ad-hoc communications: an optimal stopping approach. In: MobiHoc 2007, pp. 1–10. ACM, New York (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christodoulou, G., Ligett, K., Pyrga, E. (2010). Contention Resolution under Selfishness. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics