Skip to main content

Stress Analysis by Means of Raman Microscopy

  • Chapter
  • First Online:
Confocal Raman Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 158))

Abstract

Raman microscopy provides the unique possibility to measure stresses in a fast and uncomplicated way in the sub-micrometer range. The maximal lateral resolution is determined by the laser wavelength. In a Raman spectrum of a deformed or strained material, peak positions are shifted relative to the peak positions of stress-free material. Quantifying these shifts allows the determination of sign and magnitude of internal stresses. Depending on the Raman tensor and therefore on the material’s crystal structure, several components of the stress tensor can be measured. Hence, it is not always possible to analyze complicated stress states just by means of Raman microscopy without making adequate assumptions. For transparent Raman-active materials, 3D stress fields can be measured. This chapter will outline the principles of Raman stress measurements and present case studies on ceramics, semiconductors, and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Tamura, A. MacDowell, R. Spolenak, B. Valek, J. Bravman, W. Brown, R. Celestre, H. Padmore, B. Batterman, J.R. Patel, J. Synchrotron Radiat. 10, 137 (2003)

    Article  Google Scholar 

  2. J. Nucci, S. Kramer, E. Arzt, C. Volkert, J. Mater. Res. 20, 1851 (2005)

    Article  ADS  Google Scholar 

  3. J. Bauch, J. Brechbühl, H. Ullrich, G. Meinl, H. Lin, W. Kebede, Cryst. Res. Technol. 34(1), 71 (1999)

    Article  Google Scholar 

  4. R. Keller, A. Roshko, R. Geiss, K. Bertness, T. Quinn, Microelectron. Eng. 75(1), 96 (2004)

    Article  Google Scholar 

  5. Q. Ma, S. Chiras, D. Clarke, Z. Suo, J. Appl. Phys. 78(3), 1614 (1995)

    Article  ADS  Google Scholar 

  6. I. Wolf, Semicond. Sci. Technol. 11, 139 (1995)

    Article  Google Scholar 

  7. F. Cerdeira, C. Buchenauer, F. Pollak, M. Cardona, Phys. Rev. B 5(2), 580 (1972)

    Article  ADS  Google Scholar 

  8. E. Anastassakis, A. Pinczuk, E. Burstein, F. Pollak, M. Cardona, Solid State Commun. 8, 1053 (1993)

    Article  Google Scholar 

  9. G. Abstreiter, Appl. Surf. Sci. 50(1–4), 73 (1991)

    Article  ADS  Google Scholar 

  10. V. Srikar, A. Swan, M. Unlu, B. Goldberg, S. Spearing, J. Microelectromech. Syst. 12(6), 779 (2003)

    Article  Google Scholar 

  11. S. Ganesan, A. Maradudin, J. Oitmaa, Ann. Phys. 56(2), 556 (1970)

    Article  ADS  Google Scholar 

  12. R. Loudon, Adv. Phys. 13(52), 423 (1964)

    Article  ADS  Google Scholar 

  13. S. Narayanan, S. Kalidindi, L. Schadler, J. Appl. Phys. 82(5), 2595 (1997)

    Article  ADS  Google Scholar 

  14. E. Anastassakis, E. Burstein, J. Phys. Chem. Solids 32(2), 563 (1971)

    Article  ADS  Google Scholar 

  15. E. Anastassakis, J. Phys. Chem. of Solids 32(2), 313 (1971)

    Article  ADS  Google Scholar 

  16. I. Dewolf, H. Norstrom, H. Maes, J. Appli. Phys. 74(7), 4490 (1993)

    Article  ADS  Google Scholar 

  17. E. Bonera, M. Fanciulli, D. Batchelder, J. Appl. Phys. 94(4), 2729 (2003)

    Article  ADS  Google Scholar 

  18. G. Loechelt, N. Cave, J. Menendez, J. Appl. Phys. 86(11), 6164 (1999)

    Article  ADS  Google Scholar 

  19. G. Loechelt, N. Cave, J. Menendez, Appl. Phys. Lett. 66(26), 3639 (1995)

    Article  ADS  Google Scholar 

  20. S. Hu, J. Appl. Phys. 70(6), R53 (1991)

    Article  ADS  Google Scholar 

  21. E. Bonera, M. Fanciulli, D. Batchelder, Appl. Phys. Lett. 81(18), 3377 (2002)

    Article  ADS  Google Scholar 

  22. H. Poulsen, S. Nielsen, E. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies, T. Lorentzen, D. Juul Jensen, J. Appl. Crystallogr. 34, 751 (2001)

    Article  Google Scholar 

  23. R. Nowak, T. Manninen, C. Li, K. Heiskanen, S. Hannula, V. Lindroos, T. Soga, F. Yoshida, JSME Int. J. Ser. A - Solid Mech. Mater. Eng. 46(3), 265 (2003)

    ADS  Google Scholar 

  24. T. Wermelinger, C. Borgia, C. Solenthaler, R. Spolenak, Acta Mater. 55(14), 4657 (2007)

    Article  Google Scholar 

  25. W. Rasband, Image Processing and Analysis, (National Institutes of Health: Bethesda, Maryland, USA, 1997–2007)

    Google Scholar 

  26. R. Nowak, T. Sekino, K. Niihara, Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 74(1), 171 (1996)

    ADS  Google Scholar 

  27. T. Damen, S. Porto, B. Tell, Phys. Rev. 142(2), 570 (1966)

    Article  ADS  Google Scholar 

  28. F. Decremps, J. Pellicer-Porres, A. Saitta, J. Chervin, A. Polian, Phys. Rev. B 65(9), 092101 (2002)

    Article  ADS  Google Scholar 

  29. D. Mead, G. Wilkinson, J. Raman Spectrosc. 6(3), 123 (1977)

    Article  ADS  Google Scholar 

  30. F. Manjon, K. Syassen, R. Lauck, High Pres. Res. 22(2), 299 (2002)

    Article  Google Scholar 

  31. K. Tashiro, G. Wu, M. Kobayashi, Polymer 29(10), 1768 (1988)

    Article  Google Scholar 

  32. J. Moonen, W. Roovers, R. Meier, B. Kip, J. Polym. Sci. Part B Polym. Phys. 30(4), 361 (1992)

    Article  ADS  Google Scholar 

  33. W. Wong, R. Young, J. Mater. Sci. 29(2), 510 (1994)

    Article  ADS  Google Scholar 

  34. V. Mitra, W. Risen, R. Baughman, J. Chem. Phys. 66(6), 2731 (1977)

    Article  ADS  Google Scholar 

  35. J. Lefèvre, Ultra-High-Performance Polymer Foils, Phd thesis, ETH Zurich, 2008

    Google Scholar 

  36. Y. Ward, R. Young, Polymer 42(18), 857 (2001)

    Article  Google Scholar 

  37. M. Moskovits, Rev. Mod. Phys. 57(3), 783 (1985)

    Article  ADS  Google Scholar 

  38. S. Nie, S. Emery, Science 275(5303), 1102 (1997)

    Article  Google Scholar 

  39. L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, E. Zschech, J. Appl. Phys. 101(10), 104305 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wermelinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wermelinger, T., Spolenak, R. (2010). Stress Analysis by Means of Raman Microscopy. In: Dieing, T., Hollricher, O., Toporski, J. (eds) Confocal Raman Microscopy. Springer Series in Optical Sciences, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12522-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12522-5_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12521-8

  • Online ISBN: 978-3-642-12522-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics