Skip to main content

Cosmologies with (Hidden) N=2 Supersymmetry

  • Chapter
  • First Online:
Quantum Cosmology - The Supersymmetric Perspective - Vol. 1

Part of the book series: Lecture Notes in Physics ((LNP,volume 803))

  • 1311 Accesses

Abstract

In this chapter we discuss a rather different methodology for retrieving SQC models: not directly from N = 1 SUGRA (and therefore involving a dimensional reduction towards an N = 4 SUSY minisuperspace), but instead in an opposite direction, starting from purely bosonic configurations (e.g., general relativity and the bosonic sectors of string theories) and then building (in a consistent manner!) a minisuperspace with N = 2 SUSY, which is the simplest case [1–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Whose formal expressions bear interesting similarities with those in Chap. 5.

  2. 2.

    For example, for the expression in (6.2), we need (see footnote 15 in Sect. 2.3.1)

    $$\beta_{1} \equiv \beta^{0} - 2\beta^{+}\,,$$
    ((6.3))
    $$\beta_{2} \equiv \beta^{0} + \beta^{+} + \sqrt{3}\beta^{-}\,,$$
    ((6.4))
    $$\beta_{3} \equiv \beta^{0} + \beta^{+} - \sqrt{3}\beta^{-}\,,$$
    ((6.5))

    and of course,

    $$\beta^{0} \equiv \pm \Omega = \pm \ln a = \pm \alpha\,,$$
    ((6.6))

    for the Misner–Ryan time coordinate choice(s) [15].

  3. 3.

    Note that this feature seems to influence the form of the quantum supersymmetry constraints, as will be made clear in subsequent sections.

  4. 4.

    Ω is employed for time coordinate in the ADM parametrization, whereas \(\tilde{\Omega}\) is the conformal factor function.

  5. 5.

    At this stage, the reader might find it useful to glance through Sect. 3.3 of Vol. II. In fact, most of what follows here concerns a supersymmetric extension of particle motion in a potential well, i.e., supersymmetric quantum mechanics (SQM).

  6. 6.

    Perhaps a quick glance at (6.42) may help to illustrate this point.

  7. 7.

    It is sufficient to examine the case \(\widetilde{\Omega}(q)=0\), where the metric \({\mathcal{G}}_{XY}\left(={\mathcal{G}}_{XY}^{(0)} \right)\) is flat, and U(q) is given by \(U^{(0)}(q)\) (see Exercise 6.1).

  8. 8.

    They do indeed constitute (N = 2) SUSY generators or (local) gauge constraints.

  9. 9.

    X,Y correspond to minisuperspace variables and we employ x,y for the corresponding variables in the corresponding tangent space.

  10. 10.

    When Λ = 0, we recover the analysis in Exercise 6.2. In fact, for \(\alpha\rightarrow-\infty\), near the initial singularity, the cosmological constant term is negligible and we get \({\mathsf{B}}_1\rightarrow \textrm{e}^{-{\mathsf{W}}}\), \({\mathsf{W}}=\textrm{e}^{2\alpha}/2\) with \({\mathsf{B}}_0 \rightarrow 0\). The possibility of B 0 approaching eW can be dealt with in a Bianchi IX setting (of which the FRW is a special case). If we require Ψ not to diverge for \(\beta_\pm \rightarrow\infty\) for fixed α, then it must be excluded. Note that the remaining solution is not then the Hartle–Hawking state, but agrees with a Vilenkin type solution.

  11. 11.

    Also representing the \(\check{d}(\check{d}+1)/2\) modulus (degrees of freedom) fields.

  12. 12.

    We now take D as generic, not necessarily \(D=3\), as mentioned in Sect. 6.2.1.

  13. 13.

    \(\textrm{SL}(2,\mathbb{R})\) is also possible as a subgroup of the T-duality group.

  14. 14.

    \(\Lambda^2 <0\) is required for the Euclidean action to be real (see Sects. 6.1 and 6.1.1).

  15. 15.

    Due to the quantum Hamiltonian having an additional spin term, to avoid imaginary solutions to (6.301), we restrict the analysis to the region of parameter space where \(\Upsilon>0\). This corresponds to \(\omega < -D / (D-1)\) when \(\Lambda >0\) and \(\omega >-D/(D-1)\) if \(\Lambda <0\).

  16. 16.

    The geometry of the spatial sections of the Kantowski–Sachs model is \(S^1 \times S^2\). The symmetry group of these surfaces is of the Bianchi type IX, but only acts transitively on 2D surfaces that foliate the three-space.

  17. 17.

    For simplicity, however, we consider the case where \(A=0\). This corresponds to the limit \(\varsigma \rightarrow -\infty\) and denotes a weak coupling regime for ς. In the strong limit (\(\varsigma \rightarrow +\infty\)), the term in A dominates and Λ can be positive. In the former situation, the ‘averaged’ scale factor volume (represented by α) and the dilaton are more important, while in the latter a large anisotropy dominates in the spatial directions. This allows Λ to be positive. In particular, one may have \(\varsigma \leftarrow +\infty\) and \(u \rightarrow -\infty\), with, e.g., the singularity \(a_2 \rightarrow 0\), \(a_1 \rightarrow \infty\).

  18. 18.

    A non-diagonal minisuperspace metric would mean that fermionic states could not be clearly separated after the wave function has been annihilated by the supercharges.

References

  1. J. Bene and R. Graham: Supersymmetric homogeneous quantum cosmologies coupled to a scalar field. Phys. Rev. D 49, 799–815 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  2. E.E. Donets, M.N. Tentyukov, and M.M. Tsulaia: Towards Ns = 2 SUSY homogeneous quantum cosmology, Einstein–Yang–Mills systems. Phys. Rev. D 59, 023515 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Graham: Supersymmetric Bianchi type IX cosmology. Phys. Rev. Lett. 67, 1381–1383 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Graham and J. Bene: Supersymmetric Bianchi type IX cosmology with a scalar field. Phys. Lett. B 302, 183–188 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. J.E. Lidsey: Scale factor duality and hidden supersymmetry in scalar–tensor cosmology. Phys. Rev. D 52, 5407–5411 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  6. J.E. Lidsey and J. Maharana: Dualities and hidden supersymmetry in string quantum cosmology, tt gr-qc/9801090 (1998)

    Google Scholar 

  7. J.E. Lidsey and P.V. Moniz: Supersymmetric quantization of anisotropic scalar–tensor cosmologies. Class. Quant. Grav. 17, 4823–4840 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. P.V. Moniz: N = 2 supersymmetric FRW quantum cosmology from a D-p-brane gas. J. Phys. A 37, 10445–10458 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Assaoui and T. Lhallabi: Supersymmetry and quantum cosmology. Phys. Lett. B 509, 315–322 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. E.E. Donets, A. Pashnev, V.O. Rivelles, D.P. Sorokin, and M. Tsulaia: N = 4 superconformal mechanics and the potential structure of AdS spaces. Phys. Lett. B 484, 337–346 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E.E. Donets, A. Pashnev, J.J. Rosales, and M. Tsulaia: Partial supersymmetry breaking in multidimensional N = 4 SUSY QM, tt hep-th/0001194 (1999)

    Google Scholar 

  12. E.E. Donets, A. Pashnev, J.J. Rosales, and M.M. Tsulaia: N = 4 supersymmetric multidimensional quantum mechanics, partial SUSY breaking and superconformal quantum mechanics. Phys. Rev. D 61, 043512 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Graham: Anisotropic diagonal Bianchi type IX minisuperspace with N = 4 supersymmetry. Phys. Rev. D 48, 1602–1606 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  14. E.A. Ivanov, S.O. Krivonos, and A.I. Pashnev: Partial supersymmetry breaking in N = 4 supersymmetric quantum mechanics. Class. Quant. Grav. 8, 19–40 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  15. M.P. Ryan and L.C. Shepley: Homogeneous Relativistic Cosmologies. Princeton Series in Physics, Princeton University Press, Princeton, NJ (1975)

    Google Scholar 

  16. R. Graham: Supersymmetric general Bianchi type IX cosmology with a cosmological term. Phys. Lett. B 277, 393–397 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Socorro and E.R. Medina: Supersymmetric quantum mechanics for Bianchi class A models. Phys. Rev. D 61, 087702 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Kiefer: Quantum gravity. A general introduction. Lect. Notes Phys. 631, 3–13 (2003)

    Article  MathSciNet  Google Scholar 

  19. C. Kiefer. Quantum Gravity, 2nd edn., International Series of Monographs on Physics 136, Clarendon Press, Oxford (2007)

    Google Scholar 

  20. C. Kiefer: Quantum cosmology. Expectations and results. Ann. Phys. 15, 316–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Kiefer: Continuous measurement of intrinsic time by fermions. Class. Quant. Grav. 6, 561 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  22. C. Kiefer: Quantum cosmology and the emergence of a classical world, tt gr-qc/9308025 (1993)

    Google Scholar 

  23. C. Kiefer: Conceptual issues in quantum cosmology. Lect. Notes Phys. 541, 158–187 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  24. P.V. Moniz: Can the imprint of an early supersymmetric quantum cosmological epoch be present in our cosmological observations? Given at COSMO 97, 1st International Workshop on Particle Physics and the Early Universe, Ambleside, England, 15–19 September 1997

    Google Scholar 

  25. P.V. Moniz: Origin of structure in a supersymmetric quantum universe. Phys. Rev. D 57, 7071–7074 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Moniz: FRW minisuperspace with local N = 4 supersymmetry and self-interacting scalar field. Ann. Phys. 12, 174–198 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Kiefer, T. Luck, and P. Moniz: The semiclassical approximation to supersymmetric quantum gravity. Phys. Rev. D 72, 045006 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. S.W. Hawking and D.N. Page: The spectrum of wormholes. Phys. Rev. D 42, 2655–2663 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Socorro: Supersymmetric quantum solution for FRW cosmological model with matter. Rev. Mex. Fis. 48, 112–117 (2002)

    MathSciNet  Google Scholar 

  30. J. Socorro: Classical solutions from quantum regime for barotropic FRW model. Int. J. Theor. Phys. 42, 2087–2096 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Socorro: Supersymmetric quantum cosmology. FRW coupled with matter. Rev. Mex. Fis. 49S2, 98–101 (2003)

    Google Scholar 

  32. H. Rosu: Strictly isospectral supersymmetric potentials and the Riccati superposition principle. Nuovo Cim. B 114, 723–726 (1999)

    MathSciNet  ADS  Google Scholar 

  33. H. Rosu and J. Socorro: Supersymmetric strictly isospectral FRW models for zero factor ordering. Nuovo Cim. B 113, 683–689 (1998)

    MathSciNet  ADS  Google Scholar 

  34. H.C. Rosu: Darboux class of cosmological fluids with time-dependent adiabatic indices. Mod. Phys. Lett. A 15, 979 (2000)

    MathSciNet  Google Scholar 

  35. H.C. Rosu and J. Socorro: Isospectral supersymmetry in quantum cosmology, tt gr-qc/9603058 (1996)

    Google Scholar 

  36. H.C. Rosu and J.Socorro: One-parameter family of closed, radiation-filled Friedmann–Robertson–Walker quantum universes. Phys. Lett. A 223, 28–30 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. H.C. Rosu, J. Socorro, and O. Obregon: Strictly isospectral Bianchi type II cosmological models, tt gr-qc/9606030 (1996)

    Google Scholar 

  38. H.C. Rosu: Strictly isospectral multiple-well potentials and their multiple-parameter supersymmetric zero modes in unbroken SUSY QM, tt quant-ph/9904007 (1999)

    Google Scholar 

  39. J. Socorro, M.A. Reyes, and F.A. Gelbert: Factorization approach for barotropic FRWmodel with a cosmological constant. Phys. Lett. A 313, 338–342 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. O. Bertolami and P.V. Moniz: Decoherence of Friedmann–Robertson–Walker geometries in the presence of massive vector fields with U(1) or SO(3) global symmetries. Nucl. Phys. B 439, 259–290 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. P.V. Moniz and J.M. Mourao: Homogeneous and isotropic closed cosmologies with a gauge sector. Class. Quant. Grav. 8, 1815–1832 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  42. C.V. Johnson: D-Branes. Cambridge University Press, Cambridge, MS (2003)

    MATH  Google Scholar 

  43. M. Kaku: Introduction to Superstrings and M-Theory. Springer, New York (1999)

    Book  MATH  Google Scholar 

  44. M. Kaku: Strings, Conformal Fields, and M-Theory. Springer, New York (2000)

    Book  MATH  Google Scholar 

  45. J. Polchinski: String Theory. 1. An Introduction to the Bosonic String. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  46. J. Polchinski: String Theory. 2. Superstring Theory and Beyond. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  47. B. Zwiebach: A First Course in String Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  48. M. Gasperini and G. Veneziano: The pre-big bang scenario in string cosmology. Phys. Rept. 373, 1–212 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  49. J.E. Lidsey: Stringy quantum cosmology. Prepared for 2nd Journée Cosmologique within the framework of the International School of Astrophysics, D. Chalonge, Paris, France, 2–4 June 1994

    Google Scholar 

  50. J.E. Lidsey: Bianchi IX quantum cosmology of the heterotic string. Phys. Rev. D 49, 599–602 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  51. J.E. Lidsey: Solutions to the Wheeler–DeWitt equation inspired by the string effective action. Class. Quant. Grav. 11, 1211–1224 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  52. J.E. Lidsey: Stringy quantum cosmology of the Bianchi class A, gr-qc/9404050 (1994)

    Google Scholar 

  53. J.E. Lidsey: Quantum cosmology of generalized two-dimensional dilaton gravity models. Phys. Rev. D 51, 6829–6842 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  54. J. Maharana and J.H. Schwarz: Noncompact symmetries in string theory. Nucl. Phys. B 390, 3–32 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Cavaglia and P.V. Moniz: Canonical and quantum FRW cosmological solutions in M-theory. Class. Quant. Grav. 18, 95–120 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. J.E. Lidsey, D. Wands, and E.J. Copeland: Superstring cosmology. Phys. Rep. 337, 343–492 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  57. P.V. Moniz: FRW quantum cosmology in the non-Abelian Born–Infeld theory. Class. Quant. Grav. 19, L127–L134 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Fujii and K. Maeda: The Scalar–Tensor Theory of Gravitation. Cambridge University Press, Cambridge, MA (2003)

    MATH  Google Scholar 

  59. D. Clancy, J.E. Lidsey, and R.K. Tavakol: Effects of anisotropy and spatial curvature on the pre-big bang scenario. Phys. Rev. D 58, 044017 (1998)

    Article  ADS  Google Scholar 

  60. D. Clancy, J.E. Lidsey, and R.K. Tavakol: Scale factor dualities in anisotropic cosmologies. Class. Quant. Grav. 15, 257–272 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vargas Moniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moniz, P.V. (2010). Cosmologies with (Hidden) N=2 Supersymmetry. In: Quantum Cosmology - The Supersymmetric Perspective - Vol. 1. Lecture Notes in Physics, vol 803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11575-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11575-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11574-5

  • Online ISBN: 978-3-642-11575-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics