Skip to main content

Voxel Phantoms for Internal Dosimetry

  • Chapter
  • First Online:
Radiation Physics for Nuclear Medicine

Abstract

The calculation of radiation dose from internally incorporated radionuclides is based on so-called absorbed fractions (AFs) and specific absorbed fractions (SAFs). AFs specify the fraction of energy emitted by radioactivity in a given (source) organ that is absorbed in the source organ itself and in other (target) organs. SAFs are AFs divided by target organ mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loevinger, R., Budinger, T. and Watson, E. MIRD primer for absorbed dose calculations. (1988).

    Google Scholar 

  2. Bolch, W. E., Eckerman, K. F., Sgouros, G. and Thomas, S. R. MIRD Pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J. Nucl. Med. 50, 477–484 (2009).

    Google Scholar 

  3. Cristy, M. and Eckerman, K. F. Specific absorbed fractions of energy at various ages from internal photon sources, Part I: Methods. TM-8381/V1. (1987).

    Google Scholar 

  4. Snyder, W. S., Ford, M. R. and Warner, G. G. Estimates of specific absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, Revised. (1978).

    Google Scholar 

  5. Snyder, W. S., Ford, M. R., Warner, G. G. and Fisher, H. L. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee (MIRD). Pamphlet No. 5. J. Nucl. Med. 10(Suppl. 3), 7–52 (1969).

    Google Scholar 

  6. Cristy, M. and Eckerman, K. F. SEECAL 2.0. Program to calculate age-dependent specific effective energies. ORNL/TM-12351 (1993).

    Google Scholar 

  7. Fill, U., Zankl, M., Petoussi-Henss, N., Siebert, M. and Regulla, D. Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys. 86, 253–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Petoussi-Henss, N., Zankl, M., Fill, U. and Regulla, D. The GSF family of voxel phantoms. Phys. Med. Biol. 47, 89–106 (2002).

    Article  PubMed  Google Scholar 

  9. Zankl, M., Becker, J., Fill, U., Petoussi-Henß, N. and Eckerman, K. F. GSF male and female adult voxel models representing ICRP Reference Man – the present status. Proceedings of the Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World. Chattanooga, TN (2005).

    Google Scholar 

  10. Zankl, M., Eckerman, K. F. and Bolch, W. E. Voxel-based models representing the male and female ICRP reference adult - the skeleton. Radiat. Prot. Dosim. 127, 174–186 (2007).

    Article  CAS  Google Scholar 

  11. Zankl, M. and Wittmann, A. The adult male voxel model “Golem” segmented from whole body CT patient data. Radiat. Environ. Biophys. 40, 153–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zaidi, H. and Xu, X. G. Computational anthropomorphic models of the human anatomy: The path to realistic Monte Carlo modeling in radiological sciences. Ann. Rev. Biomed. Eng. 9, 471–500 (2007).

    Article  CAS  Google Scholar 

  13. Xu, X. G. and Eckerman, K. F. Handbook of Anatomical Models for Radiation Dosimetry. (Boca Raton, London, New York: Taylor & Francis) (2010) ISBN 978 1 4200 5979 3.

    Google Scholar 

  14. Jones, D. G. A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat. Prot. Dosim. 79, 411–414 (1998).

    Google Scholar 

  15. Petoussi-Henss, N. and Zankl, M. Voxel anthropomorphic models as a tool for internal dosimetry. Radiat. Prot. Dosim. 79, 415–418 (1998).

    Google Scholar 

  16. Smith, T., Petoussi-Henss, N. and Zankl, M. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ‘family’ of phantoms. Eur. J. Nucl. Med. 27, 1387–1398 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Yoriyaz, H., Santos, A. D., Stabin, M. G. and Cabezas, R. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code. Med. Phys. 27, 1555–1562 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, T. J., Phipps, A. W., Petoussi-Henss, N. and Zankl, M. Impact on internal doses of photon SAFs derived with the GSF adult male voxel phantom. Health Phys. 80, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Stabin, M. G. and Yoriyaz, H. Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys. 82, 21–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Zankl, M., Petoussi-Henss, N., Fill, U. and Regulla, D. The application of voxel phantoms to the internal dosimetry of radionuclides. Radiat. Prot. Dosim. 105, 539–548 (2003).

    CAS  Google Scholar 

  21. Petoussi-Henss, N., Zankl, M. and Nosske, D. Estimation of patient dose from radiopharmaceuticals using voxel models. Cancer Biother. Radiopharm. 20, 103–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Petoussi-Henss, N., Li, W. B., Zankl, M. and Eckerman, K. F. SEECAL utilizing voxel-based SAFs. Radiat. Prot. Dosim. 127, 214–219 (2007).

    Article  CAS  Google Scholar 

  23. Chao, T. C. and Xu, X. G. Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters. Phys. Med. Biol. 46, 901–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 (2007).

    Google Scholar 

  25. ICRP. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann ICRP 32(3–4) (2002).

    Google Scholar 

  26. Dimbylow, P. J. The development of realistic voxel phantoms for electromagnetic field dosimetry. Proceedings of Workshop on Voxel Phantom Development. Chilton, UK, pp. 1–7 (1996).

    Google Scholar 

  27. Jones, D. G. A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. Radiat. Prot. Dosim. 72, 21–29 (1997).

    Google Scholar 

  28. Kramer, R., Vieira, J. W., Khoury, H. J., Lima, F. R. A. and Fuelle, D. All about MAX: A male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys. Med. Biol. 48, 1239–1262 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kramer, R., Khoury, H. J., Vieira, J. W., Loureiro, E. C. M., Lima, V. J. M., Lima, F. R. A. and Hoff, G. All about FAX: a female adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys. Med. Biol. 49, 5203–5216 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Dimbylow, P. Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields. Phys. Med. Biol. 50, 1047–1070 (2005).

    Article  PubMed  Google Scholar 

  31. Kramer, R., Khoury, H. J., Vieira, J. W. and Lima, V. J. M. MAX06 and FAX06: update of two adult human phantoms for radiation protection dosimetry. Phys. Med. Biol. 51, 3331–3346 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. ICRP. Adult reference computational phantoms. ICRP Publication 110 (2009).

    Google Scholar 

  33. ICRP. Basic anatomical and physiological data for use in radiological protection: the skeleton. ICRP Publication 70. Ann ICRP 25(2) (1995).

    Google Scholar 

  34. ICRU. Photon, electron, proton and neutron interaction data for body tissues. ICRU Report 46 (1992).

    Google Scholar 

  35. Kawrakow, I. and Rogers, D. W. O. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. PIRS Report No. 701 (2003).

    Google Scholar 

  36. Cristy, M. and Eckerman, K. F. Specific absorbed fractions of energy at various ages from internal photon sources, Part V: Fifteen-year-old male and adult female. TM-8381/V5 (1987).

    Google Scholar 

  37. Cristy, M. and Eckerman, K. F. Specific absorbed fractions of energy at various ages from internal photon sources, Part VII: Adult male. TM-8381/V7. (1987).

    Google Scholar 

  38. ICRP. Limits for intakes of radionuclides by workers. Part 1. ICRP Publication 30 (1979).

    Google Scholar 

  39. ICRP. Human alimentary tract model for radiological protection. ICRP Publication 100. Ann ICRP 36(1–2) (2006).

    Google Scholar 

  40. ICRP Radiation dose to patients from radiopharmaceuticals. ICRP Publication 53. Ann ICRP 18(1–4) (1987).

    Google Scholar 

  41. Petoussi-Henss, N., Bolch, W. E., Zankl, M., Sgouros, G. and Wessels, B. Patient-specific scaling of reference S-values for cross-organ radionuclide S-values: what is appropriate? Radiat. Prot. Dosim. 127, 192–196 (2007).

    Article  CAS  Google Scholar 

  42. Zubal, I. G., Harrell, C. R., Smith, E. O., Rattner, Z., Gindi, G. and Hoffer, P. B. Computerized three-dimensional segmented human anatomy. Med. Phys. 21, 299–302 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Snyder, W. S., Ford, M. R., Warner, G. G. and Watson, E. E. “S” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet 11, Revised (1975).

    Google Scholar 

  44. Cristy, M. Applying the reciprocal dose principle to heterogeneous phantoms: Practical experience from Monte Carlo studies. Phys. Med. Biol. 28, 1289–1303 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Kramer, R., Zankl, M., Williams, G. and Drexler, G. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods, Part I: The male (Adam) and female (Eva) adult mathematical phantoms. GSF Report S-885 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zankl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Zankl, M., Schlattl, H., Petoussi-Henss, N., Hoeschen, C. (2011). Voxel Phantoms for Internal Dosimetry. In: Cantone, M., Hoeschen, C. (eds) Radiation Physics for Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11327-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11327-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11326-0

  • Online ISBN: 978-3-642-11327-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics