Skip to main content

Fragmentation of Organic Ions and Interpretation of EI Mass Spectra

  • Chapter
  • First Online:
Book cover Mass Spectrometry

Abstract

The following chapter introduces one of the key disciplines of organic mass spectrometry: the common fragmentation pathways of organic ions and the resulting methodology for the interpretation of electron ionization (EI) mass spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Budzikiewicz, H.; Djerassi, C.; Williams, D.H. Mass Spectrometry of Organic Compounds; Holden-Day: San Francisco, 1967.

    Google Scholar 

  2. McLafferty, F.W.; Turecek, F. Interpretation of Mass Spectra; 4th ed.; University Science Books: Mill Valley, 1993.

    Google Scholar 

  3. Budzikiewicz, H. Massenspektrometrie - Eine Einführung; 4th ed.; Wiley-VCH: Weinheim, 1998.

    Google Scholar 

  4. Applications of Mass Spectrometry to Organic Stereochemistry; Splitter, J.S.; Turecek, F. (eds.); Verlag Chemie: Weinheim, 1994.

    Google Scholar 

  5. Price, P. Standard Definitions of Terms Relating to Mass Spectrometry. A Report from the Committee on Measurements and Standards of the ASMS. J. Am. Chem. Soc. Mass Spectrom. 1991, 2, 336–348.

    CAS  Google Scholar 

  6. Todd, J.F.J. Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int. J. Mass Spectrom. Ion Proc. 1995, 142, 211–240.

    CAS  Google Scholar 

  7. Svec, H.J.; Junk, G.A. Electron-Impact Studies of Substituted Alkanes. J. Am. Chem. Soc. 1967, 89, 790–796.

    CAS  Google Scholar 

  8. Friedman, L.; Long, F.A. Mass Spectra of Six Lactones. J. Am. Chem. Soc. 1953, 75, 2832–1836.

    CAS  Google Scholar 

  9. Karni, M.; Mandelbaum, A. The 'Even- Electron Rule'. Org. Mass Spectrom. 1980, 15, 53–64.

    CAS  Google Scholar 

  10. Bowen, R.D.; Harrison, A.G. Loss of Methyl Radical from Some Small Immonium Ions: Unusual Violation of the Even-Electron Rule. Org. Mass Spectrom. 1981, 16, 180–182.

    CAS  Google Scholar 

  11. Nizigiyimana, L.; Rajan, P.K.; Haemers, A.; Claeys, M.; Derrick, P.J. Mechanistic Aspects of High-Energy Collision- Induced Dissociation Proximate to the Charge in Saturated Fatty Acid N-Butyl Esters Cationized with Lithium. Evidence for Hydrogen Radical Removal. Rapid Commun. Mass Spectrom. 1997, 11, 1808–1812.

    CAS  Google Scholar 

  12. Veith, H.J.; Gross, J.H. Alkane Loss from Collisionally Activated Alkylmethyleneimmonium Ions. Org. Mass Spectrom. 1991, 26, 1061–1064.

    CAS  Google Scholar 

  13. McLafferty, F.W. Mass Spectrometric Analysis. I. Aliphatic Halogenated Compounds. Anal. Chem. 1962, 34, 2–15.

    CAS  Google Scholar 

  14. Stevenson, D.P. Ionization and Dissociation by Electronic Impact. Ionization Potentials and Energies of Formation of sec-Propyl and tert-Butyl Radicals. Some Limitations on the Method. Discuss. Faraday Soc. 1951, 10, 35–45.

    Google Scholar 

  15. Audier, H.E. Ionisation et Fragmentation en SM I. Sur La Répartition de la Charge Positive Entre Fragment Provenant des Mêmes Ruptures. Org. Mass Spectrom. 1969, 2, 283–298.

    CAS  Google Scholar 

  16. Harrison, A.G.; Finney, C.D.; Sherk, J.A. Factors Determining Relative Ionic Abundances in Competing Fragmentation Reactions. Org. Mass Spectrom. 1971, 5, 1313–1320.

    CAS  Google Scholar 

  17. Levsen, K. Reaction Mechanisms, in: Fundamental Aspects of Organic Mass Spectrometry; Verlag Chemie: Weinheim, 1978; pp. 152–208.

    Google Scholar 

  18. NIST NIST Chemistry Webbook. http://webbook.nist.gov/ 2002.

  19. Sharkey, A.G., Jr.; Shultz, J.L.; Friedel, R.A. Mass Spectra of Ketones. Anal. Chem. 1956, 28, 934–940.

    CAS  Google Scholar 

  20. Gilpin, J.A.; McLafferty, F.W. Mass Spectrometric Analysis: Aliphatic Aldehydes. Anal. Chem. 1957, 29, 990–994.

    CAS  Google Scholar 

  21. Liedtke, R.J.; Djerassi, C. MS in Structural and Stereochemical Problems. CLXXXIII. A Study of the EI Induced Fragmentation of Aliphatic Aldehydes. J. Am. Chem. Soc. 1969, 91, 6814–6821.

    CAS  Google Scholar 

  22. Harrison, A.G. The High-Resolution Mass Spectra of Aliphatic Aldehydes. Org. Mass Spectrom. 1970, 3, 549–555.

    CAS  Google Scholar 

  23. Levsen, K.; McLafferty, F.W. Metastable Ion Characteristics. XXVII. Structure and Unimolecular Reactions of [C2H6N]+ and [C3H8N]+ Ions. J. Am. Chem. Soc. 1974, 96, 139–144.

    CAS  Google Scholar 

  24. Bowen, R.D. The Chemistry of [CnH2n+2 N]+ Ions. Mass Spectrom. Rev. 1991, 10, 225–279.

    CAS  Google Scholar 

  25. Bowen, R.D. Ion-Neutral Complexes. Accounts of Chemical Research 1991, 24, 364–371.

    CAS  Google Scholar 

  26. Djerassi, C.; Fenselau, C. Mass Spectrometry in Structural and Stereochemical Problems. LXXXIV. The Nature of the Cyclic Transition State in Hydrogen Rearrangements of Aliphatic Ethers. J. Am. Chem. Soc. 1965, 87, 5747–5762.

    CAS  Google Scholar 

  27. McLafferty, F.W. Mass Spectrometric Analysis of Aliphatic Ethers. Anal. Chem. 1957, 29, 1782–1789.

    CAS  Google Scholar 

  28. Friedel, R.A.; Shultz, J.L.; Sharkey, A.G., Jr. Mass Spectra of Alcohols. Anal. Chem. 1956, 28, 927–934.

    Google Scholar 

  29. Gohlke, R.S.; McLafferty, F.W. MS Analysis of Aliphatic Amines. Anal. Chem. 1962, 34, 1281–1287.

    CAS  Google Scholar 

  30. O'Nier, M.J., Jr.; Wier, T.P., Jr. Mass Spectrometry of Heavy Hydrocarbons. Anal. Chem. 1951, 830–843.

    Google Scholar 

  31. Hesse, M.; Meier, H.; Zeeh, B. Massenspektren, in: Spektroskopische Methoden in der Organischen Chemie, 6th ed.; Thieme: Stuttgart, 2002; Chap. 4, p. 243.

    Google Scholar 

  32. Audier, H.E.; Milliet, A.; Sozzi, G.; Denhez, J.P. The Isomerization Mechanisms of Alkylamines: Structure of [C2H6N]+ and [C3H8N]+ Fragment Ions. Org. Mass Spectrom. 1984, 19, 79–81.

    CAS  Google Scholar 

  33. Phillips, G.R.; Russell, M.E.; Solka, B.H. Structure of the [C2H5O]+ Ion in the Mass Spectrum of Diethyl Ether. Org. Mass Spectrom. 1975, 10, 819–823.

    CAS  Google Scholar 

  34. McAdoo, D.J.; Hudson, C.E. Gas Phase Ionic Reactions Are Generally Stepwise Processes. Int. J. Mass Spectrom. Ion Proc. 1984, 62, 269–276.

    CAS  Google Scholar 

  35. Williams, D.H.; Budzikiewicz, H.; Pelah, Z.; Djerassi, C. MS and Its Application to Structural and Stereochemical Problems. XLIV. Fragmentation Behavior of Monocyclic Ketones. Monatsh. Chem. 1964, 95, 166–177.

    CAS  Google Scholar 

  36. Seibl, J.; Gäumann, T. Massenspektren Organischer Verbindungen. 2. Mitteilung: Cyclohexanone. Helv. Chim. Acta 1963, 46, 2857–2872.

    CAS  Google Scholar 

  37. Yates, B.F.; Bouma, W.J.; Radom, L. Detection of the Prototype Phosphonium (CH2PH3), Sulfonium (CH2SH2), and Chloronium (CH2ClH) Ylides by Neutralization- Reionization Mass Spectrometry: a Theoretical Prediction. J. Am. Chem. Soc. 1984, 106, 5805–5808.

    CAS  Google Scholar 

  38. Grützmacher, H.-F. Unimolecular Reaction Mechanisms: the Role of Reactive Intermediates. Int. J. Mass Spectrom. Ion Proc. 1992, 118/119, 825–855.

    Google Scholar 

  39. Hammerum, S. Distonic Radical Cations in the Gaseous and Condensed Phase. Mass Spectrom. Rev. 1988, 7, 123–202.

    CAS  Google Scholar 

  40. Stirk, K.M.; Kiminkinen, M.L.K.; Kenttämaa, H.I. Ion-Molecule Reactions of Distonic Radical Cations. Chem. Rev. 1992, 92, 1649–1665.

    CAS  Google Scholar 

  41. Hammerum, S.; Derrick, P.J. Thermodynamics of Intermediate Ion-Molecule Complexes or Kinetics of Competing Reactions? The Reactions of Low- Energy Isobutylamine and Neopentylamine Molecular Ions. J. Chem. Soc. ,Perkin Trans. 2 1986, 1577–1580.

    Google Scholar 

  42. Yates, B.F.; Radom, L. Intramolecular Hydrogen Migration in Ionized Amines: a Theoretical Study of the Gas-Phase Analogues of the Hofmann-Löffler and Related Rearrangements. J. Am. Chem. Soc. 1987, 109, 2910–2915.

    CAS  Google Scholar 

  43. Zeller, L.; Farrell, J., Jr.; Vainiotalo, P.; Kenttämaa, H.I. Long-Lived Radical Cations of Simple Organophosphates Isomerize Spontaneously to Distonic Structures in the Gas Phase. J. Am. Chem. Soc. 1992, 114, 1205–1214.

    CAS  Google Scholar 

  44. Sack, T.M.; Miller, D.L.; Gross, M.L. The Ring Opening of Gas-Phase Cyclopropane Radical Cations. J. Am. Chem. Soc. 1985, 107, 6795–6800.

    CAS  Google Scholar 

  45. Grubb, H.M.; Meyerson, S. Mass Spectra of Alkylbenzenes, in: Mass Spectrometry of Organic Ions; McLafferty, F.W. (ed.); Academic Press: New York, 1963; pp. 453–527.

    Google Scholar 

  46. McLafferty, F.W.; Bockhoff, F.M. Collisional Activation and Metastable Ion Characteristics. 67. Formation and Stability of Gaseous Tolyl Ions. Org. Mass Spectrom. 1979, 14, 181–184.

    CAS  Google Scholar 

  47. Cone, C.; Dewar, M.J.S.; Landman, D. Gaseous Ions. 1. MINDO/3 Study of the Rearrangement of Benzyl Cation to Tropylium. J. Am. Chem. Soc. 1977, 99, 372–376.

    CAS  Google Scholar 

  48. Traeger, J.C.; McLoughlin, R.G. Threshold Photoionization and Dissociation of Toluene and Cycloheptatriene. J. Am. Chem. Soc. 1977, 99, 7351–7352.

    CAS  Google Scholar 

  49. Howe, I.; McLafferty, F.W. Unimolecular Decomposition of Toluene and Cycloheptatriene Molecular Ions. Variation of the Degree of Scrambling and Isotope Effect with Internal Energy. J. Am. Chem. Soc. 1971, 93, 99–105.

    Google Scholar 

  50. Kuck, D. Half a Century of Scrambling in Organic Ions: Complete, Incomplete, Progressive and Composite Atom Interchange. Int. J. Mass Spectrom. 2002, 213, 101–144.

    CAS  Google Scholar 

  51. Mormann, M.; Kuck, D. Protonated 1,3,5-Cycloheptatriene and 7-Alkyl- 1,3,5-Cycloheptatrienes in the Gas Phase: Ring Contraction to the Isomeric Alkylbenzenium Ions. J. Mass Spectrom. 1999, 34, 384–394.

    CAS  Google Scholar 

  52. Rylander, P.N.; Meyerson, S.; Grubb, H.M. Organic Ions in the Gas Phase. II. The Tropylium Ion. J. Am. Chem. Soc. 1957, 79, 842–846.

    CAS  Google Scholar 

  53. Cooks, R.G.; Howe, I.; Tam, S.W.; Williams, D.H. Studies in Mass Spectrometry. XXIX. Hydrogen Scrambling in Some Bicyclic Aromatic Systems. Randomization Over Two Rings. J. Am. Chem. Soc. 1968, 90, 4064–4069.

    CAS  Google Scholar 

  54. Borchers, F.; Levsen, K. Isomerization of Hydrocarbon Ions. III. [C8H8]+, [C8H8]2+, [C6H6]+, and [C6H5]+ Ions. Org. Mass Spectrom. 1975, 10, 584–594.

    CAS  Google Scholar 

  55. Nishishita, T.; McLafferty, F.W. Metastable Ion Characteristics. XXXXVII. Collisional Activation Mass Spectra of Pentene and Hexene Molecular Ions. Org. Mass Spectrom. 1977, 12, 75–77.

    CAS  Google Scholar 

  56. Borchers, F.; Levsen, K.; Schwarz, H.; Wesdemiotis, C.; Winkler, H.U. Isomerization of Linear Octene Cations in the Gas Phase. J. Am. Chem. Soc. 1977, 99, 6359–6365.

    CAS  Google Scholar 

  57. Schneider, B.; Budzikiewicz, H. A Facile Method for the Localization of a Double Bond in Aliphatic Compounds. Rapid Commun. Mass Spectrom. 1990, 4, 550–551.

    CAS  Google Scholar 

  58. Peake, D.A.; Gross, M.L. Iron(I) Chemical Ionization and Tandem Mass Spectrometry for Locating Double Bonds. Anal. Chem. 1985, 57, 115–120.

    CAS  Google Scholar 

  59. Fordham, P.J.; Chamot-Rooke, J.; Guidice, E.; Tortajada, J.; Morizur, J.-P. Analysis of Alkenes by Copper Ion GCCI- MS and GC-MS/MS Mass Spectrometry. J. Mass Spectrom. 1999, 34, 1007–1017.

    CAS  Google Scholar 

  60. Levsen, K.; Weber, R.; Borchers, F.; Heimbach, H.; Beckey, H.D. Determination of Double Bonds in Alkenes by FIMS. Anal. Chem. 1978, 50, 1655–1658.

    CAS  Google Scholar 

  61. Buser, H.-R.; Arn, H.; Guerin, P.; Rauscher, S. Determination of Double Bond Position in Mono-Unsaturated Acetates by MS of Dimethyl Disulfide Adducts. Anal. Chem. 1983, 55, 818–822.

    CAS  Google Scholar 

  62. Scribe, P.; Guezennec, J.; Dagaut, J.; Pepe, C.; Saliot, A. Identification of the Position and the Stereochemistry of the Double Bond in Monounsaturated Fatty Acid Methyl Esters by GC-MS of Dimethyl Disulfide Derivatives. Anal. Chem. 1988, 60, 928–931.

    CAS  Google Scholar 

  63. Pepe, C.; Dif, K. The Use of Ethanethiol to Locate the Triple Bond in Alkynes and the Double Bond in Substituted Alkenes by GC-MS. Rapid Commun. Mass Spectrom. 2001, 15, 97–103.

    CAS  Google Scholar 

  64. Pepe, C.; Sayer, H.; Dagaut, J.; Couffignal, R. Determination of Double Bond Positions in Triunsaturated Compounds by Means of GC-MS of Dimethyl Disulfide Derivatives. Rapid Commun. Mass Spectrom. 1997, 11, 919–921.

    CAS  Google Scholar 

  65. Levsen, K.; Heimbach, H.; Shaw, G.J.; Milne, G.W.A. Isomerization of Hydrocarbon Ions. VIII. The Electron Impact Induced Decomposition of N-Dodecane. Org. Mass Spectrom. 1977, 12, 663–670.

    CAS  Google Scholar 

  66. Lavanchy, A.; Houriet, R.; Gäumann, T. The Mass Spectrometric Fragmentation of N-Alkane. Org. Mass Spectrom. 1979, 14, 79–85.

    CAS  Google Scholar 

  67. Levsen, K. Isomerization of Hydrocarbon Ions. I. Isomeric Octanes. Collisional Activation Study. Org. Mass Spectrom. 1975, 10, 43–54.

    CAS  Google Scholar 

  68. Traeger, J.C.; McAdoo, D.J.; Hudson, C.E.; Giam, C.S. Why Are Alkane Eliminations from Ionized Alkanes so Abundant? J. Am. Chem. Soc. Mass Spectrom. 1998, 9, 21–28.

    CAS  Google Scholar 

  69. McAdoo, D.J.; Bowen, R.D. Alkane Eliminations from Ions in the Gas Phase. Eur. Mass Spectrom. 1999, 5, 389–409.

    CAS  Google Scholar 

  70. Olivella, S.; Solé, A.; McAdoo, D.J.; Griffin, L.L. Unimolecular Reactions of Ionized Alkanes: Theoretical Study of the Potential Energy Surface for CH3 .Bul. and CH4 Losses from Ionized Butane and Isobutane. J. Am. Chem. Soc. 1994, 94, 11078–11088.

    Google Scholar 

  71. Williams, D.H. A Transition State Probe. Accounts of Chemical Research 1977, 10, 280–286.

    CAS  Google Scholar 

  72. Ludányi, K.; Dallos, A.; Kühn, Z.; Vékey, D. Mass Spectrometry of Very Large Saturated Hydrocarbons. J. Mass Spectrom. 1999, 34, 264–267.

    Google Scholar 

  73. Biemann, K. Application of MS in Organic Chemistry for Structure Determination of Natural Products. Angew. Chem. 1962, 74, 102–115.

    CAS  Google Scholar 

  74. Happ, G.P.; Stewart, D.W. Rearrangement Peaks in the Mass Spectra of Cer tain Aliphatic Acids. J. Am. Chem. Soc. 1952, 74, 4404–4408.

    CAS  Google Scholar 

  75. McLafferty, F.W. Mass Spectrometric Analysis. Broad Applicability to Chemical Research. Anal. Chem. 1956, 28, 306–316.

    CAS  Google Scholar 

  76. McLafferty, F.W. Mass Spectrometric Analysis: Molecular Rearrangements. Anal. Chem. 1965, 31, 82–87.

    Google Scholar 

  77. Kingston, D.G.I.; Bursey, J.T.; Bursey, M.M. Intramolecular Hydrogen Transfer in Mass Spectra. II. McLafferty Rearrangement and Related Reactions. Chem. Industry 1974, 74, 215–245.

    CAS  Google Scholar 

  78. Zollinger, M.; Seibl, J. McLafferty Reactions in Even-Electron Ions? Org. Mass Spectrom. 1985, 11, 649–661.

    Google Scholar 

  79. Djerassi, C.; Tökés, L. Mass Spectrometry in Structural and Stereochemical Problems. XCIII. Further Observations on the Importance of Interatomic Distance in the McLafferty Rearrangement. Synthesis and Fragmentation Behavior of Deuterium-Labeled 12-Oxo Steroids. J. Am. Chem. Soc. 1966, 88, 536–544.

    CAS  Google Scholar 

  80. Djerassi, C.; von Mutzenbecher, G.; Fajkos, J.; Williams, D.H.; Budzikiewicz, H. MS in Structural and Stereochemical Problems. LXV. Synthesis and Fragmentation Behavior of 15-Oxo Steroids. The Importance of Inter-Atomic Distance in the McLafferty Rearrangement. J. Am. Chem. Soc. 1965, 87, 817–826.

    CAS  Google Scholar 

  81. Henion, J.D.; Kingston, D.G.I. MS of Organic Compounds. IX. McLafferty Rearrangements in Some Bicyclic Ketones. J. Am. Chem. Soc. 1974, 96, 2532–2536.

    CAS  Google Scholar 

  82. Stringer, M.B.; Underwood, D.J.; Bowie, J.H.; Allison, C.E.; Donchi, K.F.; Derrick, P.J. Is the McLafferty Rearrangement of Ketones Concerted or Stepwise? The Application of Kinetic Isotope Effects. Org. Mass Spectrom. 1992, 27, 270–276.

    CAS  Google Scholar 

  83. Dewar, M.J.S. Multibond Reactions Cannot Normally Be Synchronous. J. Am. Chem. Soc. 1984, 106, 209–219.

    CAS  Google Scholar 

  84. Holmes, J.L.; Lossing, F.P. Gas-Phase Heats of Formation of Keto and Enol Ions of Carbonyl Compounds. J. Am. Chem. Soc. 1980, 102, 1591–1595.

    CAS  Google Scholar 

  85. Hrušák, J. MNDO Calculations on the Neutral and Cationic [CH3-CO-R] Systems in Relation to Mass Spectrometric Fragmentations. Z. Phys. Chem. 1991, 172, 217–226.

    Google Scholar 

  86. Beynon, J.H.; Saunders, R.A.; Williams, A.E. The High Resolution Mass Spectra of Aliphatic Esters. Anal. Chem. 1961, 33, 221–225.

    CAS  Google Scholar 

  87. Harrison, A.G.; Jones, E.G. Rearrangement Reactions Following Electron Impact on Ethyl and Isopropyl Esters. Can. J. Chem. 1965, 43, 960–968.

    CAS  Google Scholar 

  88. Wesdemiotis, C.; Feng, R.; McLafferty, F.W. Distonic Radical Ions. Stepwise Elimination of Acetaldehyde from Ionized Benzyl Ethyl Ether. J. Am. Chem. Soc. 1985, 107, 715–716.

    CAS  Google Scholar 

  89. Benoit, F.M.; Harrison, A.G. Hydrogen Migrations in MS. II. Single and Double Hydrogen Migrations in the EI Fragmentation of Propyl Benzoate. Org. Mass Spectrom. 1976, 1056–1062.

    CAS  Google Scholar 

  90. Müller, J.; Krebs, G.; Lüdemann, F.; Baumgartner, E. Wasserstoff-Umlagerungen beim Elektronenstoß-induzierten Zerfall von Η6−Benzoesäure-n-Propylester- Tricarbonylchrom. J. Organomet. Chem. 1981, 218, 61–68.

    Google Scholar 

  91. Benoit, F.M.; Harrison, A.G.; Lossing, F.P. Hydrogen Migrations in Mass Spectrometry. III. Energetics of Formation of [R'CO2H2]+ in the Mass Spectra of R'CO2R. Org. Mass Spectrom. 1977, 12, 78–82.

    CAS  Google Scholar 

  92. Tajima, S.; Azami, T.; Shizuka, H.; Tsuchiya, T. An Investigation of the Mechanism of Single and Double Hydrogen Atom Transfer Reactions in Alkyl Benzoates by the Ortho Effect. Org. Mass Spectrom. 1979, 14, 499–502.

    CAS  Google Scholar 

  93. Elder, J.F., Jr.; Beynon, J.H.; Cooks, R.G. The Benzoyl Ion. Thermochemistry and Kinetic Energy Release. Org. Mass Spectrom. 1976, 11, 415–422.

    CAS  Google Scholar 

  94. McLafferty, F.W.; Gohlke, R.S. MS Analysis-Aromatic Acids and Esters. Anal. Chem. 1959, 31, 2076–2082.

    CAS  Google Scholar 

  95. Yinon, J. Mass Spectral Fragmentation Pathways in Phthalate Esters. A Tandem Mass Spectrometric Collision-Induced Dissociation Study. Org. Mass Spectrom. 1988, 23, 755–759.

    CAS  Google Scholar 

  96. Djerassi, C.; Fenselau, C. Mass Spectrometry in Structural and Stereochemical Problems. LXXXVI. The Hydrogen- Transfer Reactions in Butyl Propionate, Benzoate, and Phthalate. J. Am. Chem. Soc. 1965, 87, 5756–5762.

    CAS  Google Scholar 

  97. Turecek, F.; Hanus, V. Retro-Diels- Alder Reaction in Mass Spectrometry. Mass Spectrom. Rev. 1984, 3, 85–152.

    CAS  Google Scholar 

  98. Turecek, F.; Hanuš, V. Charge Distribution Between Formally Identical Fragments: the Retro-Diels-Alder Cleavage. Org. Mass Spectrom. 1980, 15, 4–7.

    CAS  Google Scholar 

  99. Kühne, H.; Hesse, M. The Mass Spectral Retro-Diels-Alder Reaction of 1,2,3,4- Tetrahydronaphthalene, Its Derivatives and Related Heterocyclic Compounds. Mass Spectrom. Rev. 1982, 1, 15–28.

    Google Scholar 

  100. Budzikiewicz, H.; Brauman, J.I.; Djerassi, C. Mass Spectrometry and Its Application to Structural and Stereochemical Problems. LXVII. Retro-Diels-Alder Fragmentation of Organic Molecules Under Electron Impact. Tetrahedron 1965, 21, 1855–1879.

    CAS  Google Scholar 

  101. Djerassi, C. Steroids Made It Possible: Organic Mass Spectrometry. Org. Mass Spectrom. 1992, 27, 1341–1347.

    CAS  Google Scholar 

  102. Dixon, J.S.; Midgley, I.; Djerassi, C. Mass Spectrometry in Structural and Stereochemical Problems. 248. Stereochemical Effects in EI-Induced Retro- Diels-Alder Fragmentations. J. Am. Chem. Soc. 1977, 99, 3432–3441.

    CAS  Google Scholar 

  103. Barnes, C.S.; Occolowitz, J.L. MS of Some Naturally Occurring Oxygen Heterocycles and Related Compounds. Aust. J. Chem. 1964, 17, 975–986.

    CAS  Google Scholar 

  104. Ardanaz, C.E.; Guidugli, F.H.; Catalán, C.A.N.; Joseph-Nathan, P. MS Studies of Methoxynaphthoflavones. Rapid Commun. Mass Spectrom. 1999, 13, 2071–2079.

    CAS  Google Scholar 

  105. Ballenweg, S.; Gleiter, R.; Krätschmer, W. Chemistry at Cyclopentene Addends on [60]Fullerene. MALDI-TOF-MS as a Quick and Facile Method for the Characterization of Fullerene Derivatives. Synth. Met. 1996, 77, 209–212.

    CAS  Google Scholar 

  106. Ballenweg, S.; Gleiter, R.; Krätschmer, W. Unusual Functionalization of C60 Via Hydrozirconation: Reactivity of the C60- Zr(IV) Complex vs. Alkyl-Zr(IV) Complexes. J. Chem. Soc. ,Chem. Commun. 1994, 2269–2270.

    CAS  Google Scholar 

  107. Aczel, T.; Lumpkin, H.E. Correlation of Mass Spectra With Structure in Aromatic Oxygenated Compounds. Aromatic Alcohols and Phenols. Anal. Chem. 1960, 32, 1819–1822.

    CAS  Google Scholar 

  108. Beynon, J.H. Correlation of Molecular Structure and Mass Spectra, in Mass Spectrometry and its Applications to Organic Chemistry; Elsevier: Amsterdam, 1960; pp. 352.

    Google Scholar 

  109. Momigny, J. The Mass Spectra of Monosubstituted Benzene Derivatives. Phenol, Monodeuteriophenol, Thiophenol, and Aniline. Bull. Soc. Royal Sci. Liège 1953, 22, 541–560.

    CAS  Google Scholar 

  110. Occolowitz, J.L. Mass Spectrometry of Naturally Occurring Alkenyl Phenols and Their Derivatives. Anal. Chem. 1964, 36, 2177–2181.

    CAS  Google Scholar 

  111. Stensen, W.G.; Jensen, E. Structural Determinationof 1,4-Naphthoquinones by Mass Spectrometry/Mass Spectrometry. J. Mass Spectrom. 1995, 30, 1126–1132.

    CAS  Google Scholar 

  112. Beynon, J.H.; Lester, G.R.; Williams, A.E. Specific Molecular Rearrangements in Mass Spectra of Organic Compounds. J. Phys. Chem. 1959, 63, 1861–1869.

    CAS  Google Scholar 

  113. Pelah, Z.; Wilson, J.M.; Ohashi, M.; Budzikiewicz, H.; Djerassi, C. Mass Spectrometry in Structural and Stereochemical Problems. XXXIV. Aromatic Methyl and Ethyl Ethers. Tetrahedron 1963, 19, 2233–2240.

    CAS  Google Scholar 

  114. Molenaar-Langeveld, T.A.; Ingemann, S.; Nibbering, N.M.M. Skeletal Rearrangements Preceding Carbon Monoxide Loss from Metastable Phenoxymethylene Ions Derived from Phenoxyacetic Acid and Anisole. Org. Mass Spectrom. 1993, 28, 1167–1178.

    CAS  Google Scholar 

  115. Zagorevskii, D.V.; Régimbal, J.-M.; Holmes, J.L. The Heat of Formation of the [C6,H5,O]+ Isomeric Ions. Int. J. Mass Spectrom. Ion Proc. 1997, 160, 211–222.

    CAS  Google Scholar 

  116. Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W. Energy Partitioning Data As an Ion Structure Probe. Substituted Anisoles. J. Am. Chem. Soc. 1973, 95, 1732–1739.

    CAS  Google Scholar 

  117. Alexander, J.J. Mechanism of Photochemical Decarbonylation of Acetyldicarbonyl- Η5-Cyclopentadienyliron. J. Am. Chem. Soc. 1975, 97, 1729–1732.

    CAS  Google Scholar 

  118. Coville, N.J.; Johnston, P. A Mass- Spectral Investigation of Site-Selective Carbon Monoxide Loss from Isotopically Labeled [MnRe(CO)10]+. J. Organomet. Chem. 1989, 363, 343–350.

    CAS  Google Scholar 

  119. Tobita, S.; Ogino, K.; Ino, S.; Tajima, S. On the Mechanism of Carbon Monoxide Loss from the Metastable Molecular Ion of Dimethyl Malonate. Int. J. Mass Spectrom. Ion Proc. 1988, 85, 31–42.

    CAS  Google Scholar 

  120. Moldovan, Z.; Palibroda, N.; Mercea, V.; Mihailescu, G.; Chiriac, M.; Vlasa, M. Mass Spectra of Some β-Keto Esters. A High Resolution Study. Org. Mass Spectrom. 1981, 16, 195–198.

    CAS  Google Scholar 

  121. Vairamani, M.; Mirza, U.A. Mass Spectra of Phenoxyacetyl Derivatives. Mechanism of Loss of CO from Phenyl Phenoxyacetates. Org. Mass Spectrom. 1987, 22, 406–409.

    CAS  Google Scholar 

  122. Tou, J.C. Competitive and Consecutive Eliminations of Molecular Nitrogen and Carbon Monoxide (or Ethene) from Heterocyclics Under Electron Impact. J. Heterocycl. Chem. 1974, 11, 707–711.

    CAS  Google Scholar 

  123. Meyerson, S.; Leitch, L.C. Organic Ions in the Gas Phase. XIV. Loss of Water from Primary Alcohols Under Electron Impact. J. Am. Chem. Soc. 1964, 86, 2555–2558.

    CAS  Google Scholar 

  124. Bukovits, G.J.; Budzikiewicz, H. Mass Spectroscopic Fragmentation Reactions. XXVIII. The Loss of Water from NAlkan- 1-ols. Org. Mass Spectrom. 1983, 18, 219–220.

    CAS  Google Scholar 

  125. Bowen, R.D. The Role of Ion-Neutral Complexes in the Reactions of Onium Ions and Related Species. Org. Mass Spectrom. 1993, 28, 1577–1595.

    CAS  Google Scholar 

  126. Bowen, R.D. Potential Energy Profiles for Unimolecular Reactions of Isolated Organic Ions: Some Isomers of [C4H10N]+ and [C5H12N]+. J. Chem. Soc. ,Perkin Trans. 2 1980, 1219–1227.

    CAS  Google Scholar 

  127. Bowen, R.D.; Derrick, P.J. Unimolecular Reactions of Isolated Organic Ions: the Chemistry of the Oxonium Ions [CH3CH2CH2CH2O=CH2]+ and [CH3CH2CH2CH=OCH3]+. Org. Mass Spectrom. 1993, 28, 1197–1209.

    CAS  Google Scholar 

  128. Solling, T.I.; Hammerum, S. The Retro- Ene Reaction of Gaseous Immonium Ions Revisited. J. Chem. Soc. ,Perkin Trans. 2 2001, 2324–2428.

    CAS  Google Scholar 

  129. Veith, H.J.; Gross, J.H. Alkene Loss from Metastable Methyleneimmonium Ions: Unusual Inverse Secondary Isotope Effect in Ion-Neutral Complex Intermediate Fragmentations. Org. Mass Spectrom. 1991, 26, 1097–1105.

    CAS  Google Scholar 

  130. Budzikiewicz, H.; Bold, P. A McLafferty Rearrangement in an Even-Electron System: C3H6 Elimination from the α- Cleavage Product of Tributylamine. Org. Mass Spectrom. 1991, 26, 709–712.

    CAS  Google Scholar 

  131. Bowen, R.D.; Colburn, A.W.; Derrick, P.J. Unimolecular Reactions of Isolated Organic Ions: Reactions of the Immonium Ions [CH2=N(CH3)CH(CH3)2]+, [CH2=N(CH3)CH2CH2CH3]+ and [CH2=N(CH2CH2CH3)2]+. J. Chem. Soc., Perkin Trans. 2 1993, 2363–2372.

    CAS  Google Scholar 

  132. Gross, J.H.; Veith, H.J. Propene Loss from Phenylpropylmethyleneiminium Ions. Org. Mass Spectrom. 1994, 29, 153–154.

    CAS  Google Scholar 

  133. Gross, J.H.; Veith, H.J. Unimolecular Fragmentations of Long-Chain Aliphatic Iminium Ions. Org. Mass Spectrom. 1993, 28, 867–872.

    CAS  Google Scholar 

  134. Uccella, N.A.; Howe, I.; Williams, D.H. Structure and Isomerization of Gaseous [C3H8N]+ Metastable Ions. J. Chem. Soc. ,B 1971, 1933–1939.

    CAS  Google Scholar 

  135. Levsen, K.; Schwarz, H. Influence of Charge Localization on the Isomerization of Organic Ions. Tetrahedron 1975, 31, 2431–2433.

    CAS  Google Scholar 

  136. Bowen, R.D. Unimolecular Reactions of Organic Ions: Olefin Elimination from Immonium Ions [R1R2N=CH2]+. J. Chem. Soc.,Perkin Trans. 2 1982, 409–413.

    CAS  Google Scholar 

  137. Bowen, R.D. Reactions of Isolated Organic Ions. Alkene Loss from the Immonium Ions [CH3CH=NHC2H5]+ and [CH3CH=NHC3H7]+. J. Chem. Soc. ,Perkin Trans. 2 1989, 913–918.

    CAS  Google Scholar 

  138. Bowen, R.D.; Colburn, A.W.; Derrick, P.J. Unimolecular Reactions of the Isolated Immonium Ions [CH3CH=NHC4H9]+, [CH3CH2CH=NHC4H9]+,[(CH3)2C=NHC4H9]+. Org. Mass Spectrom. 1990, 25, 509–516.

    CAS  Google Scholar 

  139. Bowen, R.D.; Maccoll, A. Unimolecular Reactions of Ionized Ethers. J. Chem. Soc. ,Perkin Trans. 2 1990, 147–155.

    Google Scholar 

  140. Traeger, J.C.; Hudson, C.E.; McAdoo, D.J. Energy Dependence of Ion-Induced Dipole Complex-Mediated Alkane Eliminations from Ionized Ethers. J. Phys. Chem. 1990, 94, 5714–5717.

    CAS  Google Scholar 

  141. Bowen, R.D.; Williams, D.H. Non- Concerted Unimolecular Reactions of Ions in the Gas-Phase: the Importance of Ion-Dipole Interactions in Carbonium Ion Isomerizations. Int. J. Mass Spectrom. Ion Phys. 1979, 29, 47–55.

    CAS  Google Scholar 

  142. Bowen, R.D.; Williams, D.H. Unimolecular Reactions of Isolated Organic Ions. The Importance of Ion-Dipole Interactions. J. Am. Chem. Soc. 1980, 102, 2752–2756.

    CAS  Google Scholar 

  143. Bowen, R.D.; Derrick, P.J. The Mechanism of Ethylene Elimination from the Oxonium Ions [CH3CH2CH=OCH2CH3]+ and [(CH3)2C=OCH2CH3]+. J. Chem. Soc. ,Perkin Trans. 2 1992, 1033–1039.

    CAS  Google Scholar 

  144. Nguyen, M.T.; Vanquickenborne, L.G.; Bouchoux, G. Energy Barrier for 1,2- Elimination of Methane from Dimethyloxonium Cation. Int. J. Mass Spectrom. Ion Proc. 1993, 124, R11-R14.

    Google Scholar 

  145. Lias, S.G.; Liebman, J.F.; Levin, R.D. Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules. J. Phys. Chem. Ref. Data 1984, 13, 695–808.

    CAS  Google Scholar 

  146. Lias, S.G.; Bartmess, J.E.; Liebman, J.F.; Holmes, J.L.; Levin, R.D.; Mallard, W.G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data 1988, 17, Supplement 1, 861 pp.

    Google Scholar 

  147. Hunter, E.P.L.; Lias, S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656.

    CAS  Google Scholar 

  148. Bowen, R.D.; Colburn, A.W.; Derrick, P.J. Unimolecular Reactions of Isolated Organic Ions: the Chemistry of the Unsaturated Oxonium Ion [CH2=CHCH=OCH3]+. Org. Mass Spectrom. 1992, 27, 625–632.

    CAS  Google Scholar 

  149. Bowen, R.D.; Stapleton, B.J.; Williams, D.H. Nonconcerted Unimolecular Reactions of Ions in the Gas Phase: Isomerization of Weakly Coordinated Carbonium Ions. J. Chem. Soc. ,Chem. Commun. 1978, 24–26.

    CAS  Google Scholar 

  150. Morton, T.H. Gas Phase Analogues of Solvolysis Reactions. Tetrahedron 1982, 38, 3195–3243.

    CAS  Google Scholar 

  151. Morton, T.H. The Reorientation Criterion and Positive Ion-Neutral Complexes. Org. Mass Spectrom. 1992, 27, 353–368.

    CAS  Google Scholar 

  152. Longevialle, P. Ion-Neutral Complexes in the Unimolecular Reactivity of Organic Cations in the Gas Phase. Mass Spectrom. Rev. 1992, 11, 157–192.

    CAS  Google Scholar 

  153. McAdoo, D.J. Ion-Neutral Complexes in Unimolecular Decompositions. Mass Spectrom. Rev. 1988, 7, 363–393.

    CAS  Google Scholar 

  154. Rylander, P.N.; Meyerson, S. Organic Ions in the Gas Phase. I. The Cationated Cyclopropane Ring. J. Am. Chem. Soc. 1956, 78, 5799–5802.

    CAS  Google Scholar 

  155. Meyerson, S. Cationated Cyclopropanes As Reaction Intermediates in Mass Spectra: an Earlier Incarnation of Ion-Neutral Complexes. Org. Mass Spectrom. 1989, 24, 267–270.

    CAS  Google Scholar 

  156. Longevialle, P.; Botter, R. Electron Impact Mass Spectra of Bifunctional Steroids. The Interaction Between Ionic and Neutral Fragments Derived from the Same Parent Ion. Org. Mass Spectrom. 1983, 18, 1–8.

    CAS  Google Scholar 

  157. Longevialle, P.; Botter, R. The Interaction Between Ionic and Neutral Fragments from the Same Parent Ion in the Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1983, 47, 179–182.

    CAS  Google Scholar 

  158. Redman, E.W.; Morton, T.H. Product- Determining Steps in Gas-Phase Broensted Acid-Base Reactions. Deprotonation of 1-Methylcyclopentyl Cation by Amine Bases. J. Am. Chem. Soc. 1986, 108, 5701–5708.

    CAS  Google Scholar 

  159. Filges, U.; Grützmacher, H.-F. Fragmentations of Protonated Benzaldehydes Via Intermediate Ion/Molecule Complexes. Org. Mass Spectrom. 1986, 21, 673–680.

    CAS  Google Scholar 

  160. Hudson, C.E.; McAdoo, D.J. Alkane Eliminations from Radical Cations Through Ion-Radical Complexes. Int. J. Mass Spectrom. Ion Proc. 1984, 59, 325–332.

    CAS  Google Scholar 

  161. McAdoo, D.J.; Hudson, C.E. Ion-Neutral Complex-Mediated Hydrogen Exchange in Ionized Butanol: a Mechanism for Nonspecific Hydrogen Migration. Org. Mass Spectrom. 1987, 22, 615–621.

    CAS  Google Scholar 

  162. Hammerum, S.; Audier, H.E. Experimental Verification of the Intermediacy and Interconversion of Ion-Neutral Complexes As Radical Cations Dissociate. J. Chem. Soc., Chem. Commun. 1988, 860–861.

    CAS  Google Scholar 

  163. Traeger, J.C.; Hudson, C.E.; McAdoo, D.J. Isomeric Ion-Neutral Complexes Generated from Ionized 2-Methylpropanol and N-Butanol: the Effect of the Polarity of the Neutral Partner on Complex-Mediated Reactions. J. Am. Chem. Soc. Mass Spectrom. 1991, 3, 409–416.

    Google Scholar 

  164. Sozzi, G.; Audier, H.E.; Mourgues, P.; Milliet, A. Alkyl Phenyl Ether Radical Cations in the Gas Phase: a Reaction Model. Org. Mass Spectrom. 1987, 22, 746–747.

    CAS  Google Scholar 

  165. Blanchette, M.C.; Holmes, J.L.; Lossing, F.P. The Fragmentation of Ionized Alkyl Phenyl Ethers. Org. Mass Spectrom. 1989, 24, 673–678.

    CAS  Google Scholar 

  166. Harnish, D.; Holmes, J.L. Ion-Radical Complexes in the Gas Phase: Structure and Mechanism in the Fragmentation of Ionized Alkyl Phenyl Ethers. J. Am. Chem. Soc. 1991, 113, 9729–9734.

    CAS  Google Scholar 

  167. Zappey, H.W.; Ingemann, S.; Nibbering, N.M.M. Isomerization and Fragmentation of Aliphatic Thioether Radical Cations: Ion-Neutral Complexes in the Reactions of Metastable Ethyl Propyl Thioether Ions. J. Chem. Soc., Perkin Trans. 2 1991, 1887–1892.

    CAS  Google Scholar 

  168. Broer, W.J.; Weringa, W.D. Potential Energy Profiles for the Unimolecular Reactions of [C3H7S]+ Ions. Org. Mass Spectrom. 1980, 229–234.

    CAS  Google Scholar 

  169. Schwarz, H. Some Newer Aspects of Mass Spectrometric Ortho Effects. Top. Curr. Chem. 1978, 73, 231–263.

    CAS  Google Scholar 

  170. Meyerson, S.; Drews, H.; Field, E.K. Mass Spectra of Ortho-Substituted Diarylmethanes. J. Am. Chem. Soc. 1964, 86, 4964–4967.

    CAS  Google Scholar 

  171. Grützmacher, H.-F. Mechanisms of Mass Spectrometric Fragmentation Reactions. XXXII. The Loss of Ortho Halo Substituents from Substituted Thiobenzamide Ions. Org. Mass Spectrom. 1981, 16, 448–450.

    Google Scholar 

  172. Ramana, D.V.; Sundaram, N.; George, N. Ortho Effects in Organic Molecules on EI. 14. Concerted and Stepwise Ejections of SO2 and N2 from N-Arylidene-2- Nitrobenzenesulfen-amides. Org. Mass Spectrom. 1987, 22, 140–144.

    CAS  Google Scholar 

  173. Sekiguchi, O.; Noguchi, T.; Ogino, K.; Tajima, S. Fragmentation of Metastable Molecular Ions of Acetylanisoles. Int. J. Mass Spectrom. Ion Proc. 1994, 132, 172–179.

    Google Scholar 

  174. Barkow, A.; Pilotek, S.; Grützmacher, H.-F. Ortho Effects: A Mechanistic Study. Eur. Mass Spectrom. 1995, 1, 525–537.

    CAS  Google Scholar 

  175. Danikiewicz, W. Electron Ionization- Induced Fragmentation of N-Alkyl-o- Nitroanilines: Observation of New Types of Ortho Effects. Eur. Mass Spectrom. 1998, 4, 167–179.

    CAS  Google Scholar 

  176. Spiteller, G. The Ortho Effect in the Mass Spectra of Aromatic Compounds. Monatsh. Chem. 1961, 92, 1147–1154.

    Google Scholar 

  177. Martens, J.; Praefcke, K.; Schwarz, H. Spectroscopic Investigations. IX. Analytical Importance of the Ortho Effect in Mass Spectrometry. Benzoic and Thiobenzoic Acid Derivatives. Z. Naturforsch. ,B 1975, 30, 259–262.

    Google Scholar 

  178. Smith, J.G.; Wilson, G.L.; Miller, J.M. Mass Spectra of Isopropyl Benzene Derivatives. A Study of the Ortho Effect. Org. Mass Spectrom. 1975, 10, 5–17.

    CAS  Google Scholar 

  179. Schwarz, H.; Köppel, C.; Bohlmann, F. Electron Impact-Induced Fragmentation of Acetylene Compounds. XII. Rearrangement of Bis(Trimethylsilyl) Ethers of Unsaturated α,ω-Diols and Mass Spectrometric Identification of Isomeric Phenols. Tetrahedron 1974, 30, 689–693.

    CAS  Google Scholar 

  180. Krauss, D.; Mainx, H.G.; Tauscher, B.; Bischof, P. Fragmentation of Trimethylsilyl Derivatives of 2-Alkoxyphenols: a Further Violation of the 'Even-Electron Rule'. Org. Mass Spectrom. 1985, 20, 614–618.

    CAS  Google Scholar 

  181. Svendsen, J.S.; Sydnes, L.K.; Whist, J.E. MS Study of Dimethyl Esters of Trimethylsilyl Ether Derivatives of Some 3-Hydroxy Dicarboxylic Acids. Org. Mass Spectrom. 1987, 22, 421–429.

    CAS  Google Scholar 

  182. Svendsen, J.S.; Whist, J.E.; Sydnes, L.K. A Mass Spectrometric Study of the Dimethyl Ester Trimethylsilyl Enol Ether Derivatives of Some 3-Oxodicarboxylic Acids. Org. Mass Spectrom. 1987, 22, 486–492.

    CAS  Google Scholar 

  183. Halket, H.M.; Zaikin, V.G. Derivatization in Mass Spectrometry –1. Silylation. Eur. J. Mass Spectrom. 2003, 9, 1–21.

    CAS  Google Scholar 

  184. Beynon, J.H.; Bertrand, M.; Cooks, R.G. Metastable Loss of Nitrosyl Radical from Aromatic Nitro Compounds. J. Am. Chem. Soc. 1973, 95, 1739–1745.

    CAS  Google Scholar 

  185. McLuckey, S.A.; Glish, G.L. The Effect of Charge on Hydroxyl Loss from Ortho- Substituted Nitrobenzene Ions. Org. Mass Spectrom. 1987, 22, 224–228.

    CAS  Google Scholar 

  186. Beynon, J.H.; Saunders, R.A.; Topham, A.; Williams, A.E. The Dissociation of O-Nitrotoluene Under Electron Impact. J. Chem. Soc. 1965, 6403–6405.

    CAS  Google Scholar 

  187. Herbert, C.G.; Larka, E.A.; Beynon, J.H. The Elimination of Masses 27 and 28 from the [M-OH]+ Ion of 2-Nitrotoluene. Org. Mass Spectrom. 1984, 19, 306–310.

    CAS  Google Scholar 

  188. Meyerson, S.; Puskas, I.; Fields, E.K. Organic Ions in the Gas Phase. XVIII. Mass Spectra of Nitroarenes. J. Am. Chem. Soc. 1966, 88, 4974–4908.

    CAS  Google Scholar 

  189. Riley, J.S.; Baer, T.; Marbury, G.D. Sequential Ortho Effects: Characterization of Novel [M-35]+ Fragment Ions in the Mass Spectra of 2-Alkyl-4,6- Dinitrophenols. J. Am. Chem. Soc. Mass Spectrom. 1991, 2, 69–75.

    CAS  Google Scholar 

  190. Yinon, J. Mass Spectral Fragmentation Pathways in 2,4,6-Trinitroaromatic Compounds. A Tandem-MS Collision Induced Dissociation Study. Org. Mass Spectrom. 1987, 22, 501–505.

    CAS  Google Scholar 

  191. Porter, Q.N.; Baldas, J. Mass Spectrometry of Heterocyclic Compounds; Wiley Interscience: New York, 1971.

    Google Scholar 

  192. Schwarz, H.; Bohlmann, F. Mass Spectrometric Investigation of Amides. II. EI Fragmentation of (Phenylacetyl)- Aziridine, -Pyrrolidine, and -Piperidine. Tetrahedron Lett. 1973, 38, 3703–3706.

    Google Scholar 

  193. Nakano, T.; Martin, A. Mass Spectrometric Fragmentation of the Oxetanes of 3,5-Dimethylisoxazole, 2,4-Dimethylthiazole, and 1-Acetylimidazole. Org. Mass Spectrom. 1981, 16, 55–61.

    CAS  Google Scholar 

  194. Grützmacher, H.-F.; Pankoke, D. Rearrangement Reactions of the Molecular Ions of Substituted Aliphatic Oxiranes. Org. Mass Spectrom. 1989, 24, 647–652.

    Google Scholar 

  195. Collin, J.E.; Conde-Caprace, G. Ionization and Dissociation of Cyclic Ethers by Electron Impact. Int. J. Mass Spectrom. Ion Phys. 1968, 1, 213–225.

    CAS  Google Scholar 

  196. Duffield, A.M.; Budzikiewicz, H.; Williams, D.H.; Djerassi, C. Mass Spectrometry in Structural and Stereochemical Problems. LXIV. A Study of the Fragmentation Processes of Some Cyclic Amines. J. Am. Chem. Soc. 1965, 87, 810–816.

    CAS  Google Scholar 

  197. Burgers, P.C.; Holmes, J.L.; Mommers, A.A.; Terlouw, J.K. Neutral Products of Ion Fragmentations: HCN and HNC Identified by Collisionally Induced Dissociative Ionization. Chem. Phys. Lett. 1983, 102, 1–3.

    CAS  Google Scholar 

  198. Hop, C.E.C.A.; Dakubu, M.; Holmes, J.L. Do the Aminopyridine Molecular Ions Display Aniline- or Pyridine-Type Behavior? Org. Mass Spectrom. 1988, 23, 609–612.

    CAS  Google Scholar 

  199. Rosenstock, H.M.; Stockbauer, R.; Parr, A.C. Unimolecular Kinetics of Pyridine Ion Fragmentation. Int. J. Mass Spectrom. Ion Phys. 1981, 38, 323–331.

    CAS  Google Scholar 

  200. Burgers, P.C.; Holmes, J.L. Kinetic Energy Release in Metastable-Ion Fragmentations. Rapid Commun. Mass Spectrom. 1989, 2, 279–280.

    Google Scholar 

  201. Cardoso, A.M.; Ferrer, A.J. Fragmentation Reactions of Molecular Ions and Dications of Indoleamines. Eur. Mass Spectrom. 1999, 5, 11–18.

    CAS  Google Scholar 

  202. Rodríguez, J.G.; Urrutia, A.; Canoira, L. EI-MS of Indoles. Int. J. Mass Spectrom. Ion Proc. 1996, 152, 97–110.

    Google Scholar 

  203. Hesse, M. Indolalkaloide, Teil 1: Text; VCH: Weinheim, 1974.

    Google Scholar 

  204. Hesse, M. Indolalkaloide, Teil 2: Spektren; VCH: Weinheim, 1974.

    Google Scholar 

  205. Biemann, K. Four Decades of Structure Determination by MS: from Alkaloids to Heparin. J. Am. Chem. Soc. Mass Spectrom. 2002, 13, 1254–1272.

    CAS  Google Scholar 

  206. Duffield, A.M.; Beugelmans, R.; Budzikiewicz, H.; Lightner, D.A.; Williams, D.H.; Djerassi, C. MS in Structural and Stereochemical Problems. HRearrangements Induced by EI on N-n- Butyl- and N-n-Pentylpyrroles. J. Am. Chem. Soc. 1965, 87, 805–810.

    CAS  Google Scholar 

  207. Aubagnac, J.L.; Campion, P. Mass Spectrometry of Nitrogen Heterocycles. X. Contribution to the Behavior of the Aniline Ion and Aminopyridine Ions Prior to Fragmentation by Loss of HCN. Org. Mass Spectrom. 1979, 14, 425–429.

    CAS  Google Scholar 

  208. Heyns, K.; Stute, R.; Scharmann, H. Mass Spectrometric Investigations. XII. Mass Spectra of Furans. Tetrahedron 1966, 22, 2223–2235.

    CAS  Google Scholar 

  209. De Jong, F.; Sinnige, H.J.M.; Janssen, M.J. Carbon Scrambling in Thiophene Under Electron Impact. Rec. Trav. Chim. Pays-Bas 1970, 89, 225–226.

    Google Scholar 

  210. Williams, D.H.; Cooks, R.G.; Ronayne, J.; Tam, S.W. Studies in Mass Spectrometry. XXVII. The Decomposition of Furan, Thiophene, and Deuterated Analogs Under EI. Tetrahedron Lett. 1968, 14, 1777–1780.

    Google Scholar 

  211. Riepe, W.; Zander, M. The Mass Spectrometric Fragmentation Behavior of Thiophene Benzologs. Org. Mass Spectrom. 1979, 14, 455–456.

    CAS  Google Scholar 

  212. Rothwell, A.P.; Wood, K.V.; Gupta, A.K.; Prasad, J.V.N.V. Mass Spectra of 2- and 3-Cycloalkenylfurans and -Cycloalkenylthiophenes and Their Oxy Derivatives. Org. Mass Spectrom. 1987, 22, 790–795.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen H. Gross .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2011). Fragmentation of Organic Ions and Interpretation of EI Mass Spectra. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10711-5_6

Download citation

Publish with us

Policies and ethics