Skip to main content

Principles of Ionization and Ion Dissociation

  • Chapter
  • First Online:

Abstract

The mass spectrometer can be regarded as a kind of chemical laboratory, especially designed to study ions in the gas phase [1,2]. In addition to the task it is commonly used for – creation of mass spectra for a generally analytical purpose – it allows for the examination of fragmentation pathways of selected ions, for the study of ion–neutral reactions and more.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Porter, C.J.; Beynon, J.H.; Ast, T. The Modern Mass Spectrometer. A Complete Chemical Laboratory. Org. Mass Spectrom. 1981, 16, 101–114.

    CAS  Google Scholar 

  2. Schwarz, H. The Chemistry of Naked Molecules or the Mass Spectrometer As a Laboratory. Chem. Unserer Zeit 1991, 25, 268–278.

    CAS  Google Scholar 

  3. Kazakevich, Y. Citation Used by Permission. http://hplc.chem.shu.edu/ 1996, Seton Hall Univ., South Orange, NJ.

  4. Cooks, R.G.; Beynon, J.H.; Caprioli, R.M. Metastable Ions; Elsevier: Amsterdam, 1973.

    Google Scholar 

  5. Levsen, K. Fundamental Aspects of Organic Mass Spectrometry; VCH: Weinheim, 1978.

    Google Scholar 

  6. Franklin, J.L. Energy Distributions in the Unimolecular Decomposition of Ions, in Gas Phase Ion Chemistry; Bowers, M.T. (ed.); Academic Press: New York, 1979; Vol. 1, Chap. 7, pp. 272–303.

    Google Scholar 

  7. Beynon, J.H.; Gilbert, J.R. Energetics and Mechanisms of Unimolecular Reactions of Positive Ions: Mass Spectrometric Methods, in Gas Phase Ion Chemistry; Bowers, M.T. (ed.); Academic Press: New York, 1979; Vol. 2, Chap. 13, pp. 153–179.

    Google Scholar 

  8. Vogel, P. The Study of Carbocations in the Gas Phase, in Carbocation Chemistry; Elsevier: Amsterdam, 1985; Chap. 2, pp. 61–84.

    Google Scholar 

  9. Holmes, J.L. Assigning Structures to Ions in the Gas Phase. Org. Mass Spectrom. 1985, 20, 169–183.

    CAS  Google Scholar 

  10. Lorquet, J.C. Basic Questions in MS. Org. Mass Spectrom. 1981, 16, 469–481.

    CAS  Google Scholar 

  11. Lorquet, J.C. Landmarks in the Theory of Mass Spectra. Int. J. Mass Spectrom. 2000, 200, 43–56.

    CAS  Google Scholar 

  12. Märk, T.D. Fundamental Aspects of Electron Impact Ionization. Int. J. Mass Spectrom. Ion Phys. 1982, 45, 125–145.

    Google Scholar 

  13. Märk, T.D. Electron Impact Ionization, in Gaseous ion Chemistry and Mass Spectrometry, Futrell, J.H. (ed.); Wiley: New York, 1986; pp. 61–93.

    Google Scholar 

  14. Wolkenstein, K.; Gross, J.H.; Oeser, T.; Schöler, H.F. Spectroscopic Characterization and Crystal Structure of the 1,2,3,4,5,6-Hexahydrophen-anthro- [1,10,9,8-opqra]Perylene. Tetrahedron Lett. 2002, 43, 1653–1655.

    CAS  Google Scholar 

  15. Schröder, E. Massenspektrometrie – Begriffe und Definitionen; Springer-Verlag: Heidelberg, 1991.

    Google Scholar 

  16. Harrison, A.G. Fundamentals of Gas Phase Ion Chemistry, in Chemical Ionization Mass Spectrometry, 2nd ed.; CRC Press: Boca Raton, 1992; Chap. 2, pp.26.

    Google Scholar 

  17. De Wall, R.; Neuert, H. The Formation of Negative Ions From Electron Impact With Tungsten Hexafluoride. Z. Naturforsch., A. 1977, 32A, 968–971.

    Google Scholar 

  18. Jones, E.G.; Harrison, A.G. Study of Penning Ionization Reactions Using a Single-Source Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1970, 5, 137–156.

    CAS  Google Scholar 

  19. Penning, F.M. Ionization by Metastable Atoms. Naturwissenschaften 1927, 15, 818.

    CAS  Google Scholar 

  20. Hornbeck, J.A.; Molnar, J.P. Mass- Spectrometric Studies of Molecular Ions in the Noble Gases. Phys. Rev. 1951, 84, 621–625.

    CAS  Google Scholar 

  21. Faubert, D.; Paul, G.J.C.; Giroux, J.; Betrand, M.J. Selective Fragmentation and Ionization of Organic Compounds Using an Energy-Tunable Rare-Gas Metastable Beam Source. Int. J. Mass Spectrom. Ion Proc. 1993, 124, 69–77.

    CAS  Google Scholar 

  22. Svec, H.J.; Junk, G.A. Electron-Impact Studies of Substituted Alkanes. J. Am. Chem. Soc. 1967, 89, 790–796.

    CAS  Google Scholar 

  23. NIST Chemistry Webbook. http://webbook. nist.gov/ 2002.

  24. Honig, R.E. Ionization Potentials of Some Hydrocarbon Series. J. Chem. Phys. 1948, 16, 105–112.

    CAS  Google Scholar 

  25. Baldwin, M.; Kirkien-Konasiewicz, A.; Loudon, A.G.; Maccoll, A.; Smith, D. Localized or Delocalized Charges in Molecule-Ions? Chem. Commun. 1966, 574.

    CAS  Google Scholar 

  26. McLafferty, F.W. Generalized Mechanism for Mass Spectral Reactions. Chem. Commun. 1966, 78–80.

    CAS  Google Scholar 

  27. Wellington, C.A.; Khowaiter, S.H. Charge Distributions in Molecules and Ions: MINDO 3 Calculations. An Alternative of the Charge Localization Concept in Mass Spectrometry. Tetrahedron 1978, 34, 2183–2190.

    CAS  Google Scholar 

  28. Baldwin, M.A.; Welham, K.J. Charge Localization by Molecular Orbital Calculations. I. Urea and Thiourea. Rapid. Commun. Mass Spectrom. 1987, 1, 13–15.

    CAS  Google Scholar 

  29. Baldwin, M.A.; Welham, K.J. Charge Localization by Molecular Orbital Calculations. II. Formamide, Thioformamide and N-Methylated Analogs. Org. Mass Spectrom. 1988, 23, 425–428.

    CAS  Google Scholar 

  30. Weinkauf, R.; Lehrer, F.; Schlag, E.W.; Metsala, A. Investigation of Charge Localization and Charge Delocalization in Model Molecules by Multiphoton Ionization Photoelectron Spectroscopy and DFT Calculations. Faraday Discussions 2000, 115, 363–381.

    CAS  Google Scholar 

  31. Cone, C.; Dewar, M.J.S.; Landman, D. Gaseous Ions. 1. MINDO/3 Study of the Rearrangement of Benzyl Cation to Tropylium. J. Am. Chem. Soc. 1977, 99, 372–376.

    CAS  Google Scholar 

  32. Born, M.; Oppenheimer, J.R. Zur Quantentheorie Der Molekeln. Annalen der Physik 1927, 84, 457–484.

    CAS  Google Scholar 

  33. Seiler, R. Born-Oppenheimer Approximation. International Journal of Quantum Chemistry 1969, 3, 25–32.

    CAS  Google Scholar 

  34. Lipson, R.H. Ultraviolet and Visible Absorption Spectroscopy, in Encyclopedia of Applied Spectroscopy, Andrews, D.L. (ed.); Wiley-VCH: Berlin, 2009; Chap. 11, pp. 353–380.

    Google Scholar 

  35. Franck, J. Elementary Processes of Photochemical Reactions. Trans. Faraday Soc. 1925, 21, 536–542.

    Google Scholar 

  36. Condon, E.U. Theory of Intensity Distribution in Band Systems. Phys. Rev. 1926, 28, 1182–1201.

    CAS  Google Scholar 

  37. Dunn, G.H. Franck-Condon Factors for the Ionization of H2 and D2.J. Chem. Phys. 1966, 44, 2592–2594.

    CAS  Google Scholar 

  38. Märk, T.D. Fundamental Aspects of Electron Impact Ionization. Int. J. Mass Spectrom. Ion Phys. 1982, 45, 125–145.

    Google Scholar 

  39. Märk, T.D. Electron Impact Ionization, in Gaseous ion Chemistry and MS, Futrell, J.H. (ed.); Wiley: New York, 1986; pp. 61–93.

    Google Scholar 

  40. McLafferty, F.W.; Wachs, T.; Lifshitz, C.; Innorta, G.; Irving, P. Substituent Effects in Unimolecular Ion Decompositions. XV. Mechanistic Interpretations and the Quasi-Equilibrium Theory. J. Am. Chem. Soc. 1970, 92, 6867–6880.

    CAS  Google Scholar 

  41. Egger, K.W.; Cocks, A.T. Homopolarand Heteropolar Bond Dissociation Energies and Heats of Formation of Radicals and Ions in the Gas Phase. I. Data on Organic Molecules. Helv. Chim. Acta 1973, 56, 1516–1536. 64

    CAS  Google Scholar 

  42. Lossing, F.P.; Semeluk, G.P. Free Radicals by Mass Spectrometry. XLII. Ionization Potentials and Ionic Heats of Formation for C1-C4 Alkyl Radicals. Can. J. Chem. 1970, 48, 955–965.

    CAS  Google Scholar 

  43. Lossing, F.P.; Holmes, J.L. Stabilization Energy and Ion Size in Carbocations in the Gas Phase. J. Am. Chem. Soc. 1984, 106, 6917–6920.

    CAS  Google Scholar 

  44. Cox, J.D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds; Academic Press: London, 1970.

    Google Scholar 

  45. Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A. Total and Partial Electron Collisional Ionization Cross Sections for Methane, Ethane, Silane, and Disilane. J. Chem. Phys. 1984, 81, 1770–1777.

    CAS  Google Scholar 

  46. Wahrhaftig, A.L. Ion Dissociations in the Mass Spectrometer, in Advances in Mass Spectrometry, Waldron, J.D (ed.); Pergamon: Oxford, 1959; pp. 274–286.

    Google Scholar 

  47. Wahrhaftig, A.L. Unimolecular Dissociations of Gaseous Ions, in Gaseous ion Chemistry and MS, Futrell, J.H. (ed.); Wiley: New York, 1986; pp. 7–24.

    Google Scholar 

  48. Rosenstock, H.M.; Krauss, M. Quasi- Equilibrium Theory of Mass Spectra, in Mass Spectrometry of Organic Ions; McLafferty, F.W. (ed.); Academic Press: London, 1963; pp. 1–64.

    Google Scholar 

  49. Bohme, D.K.; Mackay, G.I. Bridging the Gap Between the Gas Phase and Solution: Transition in the Kinetics of Nucleophilic Displacement Reactions. J. Am. Chem. Soc. 1981, 103, 978–979.

    CAS  Google Scholar 

  50. Speranza, M. Gas Phase Ion Chemistry Versus Solution Chemistry. Int. J. Mass Spectrom. Ion Proc. 1992, 118/119, 395–447.

    Google Scholar 

  51. Rosenstock, H.M.; Wallenstein, M.B.; Wahrhaftig, A.L.; Eyring, H. Absolute Rate Theory for Isolated Systems and the Mass Spectra of Polyatomic Molecules. Proc. Natl. Acad. Sci. U.S.A. 1952, 38, 667–678.

    CAS  Google Scholar 

  52. McAdoo, D.J.; Bente, P.F.I.; Gross, M.L.; McLafferty, F.W. Metastable Ion Characteristics. XXIII. Internal Energy of Product Ions Formed in Massspectral Reactions. Org. Mass Spectrom. 1974, 9, 525–535.

    CAS  Google Scholar 

  53. Meier, K.; Seibl, J. Measurement of Ion Residence Times in a Commercial Electron Impact Ion Source. Int. J. Mass Spectrom. Ion Phys. 1974, 14, 99–106.

    CAS  Google Scholar 

  54. Chupka, W.A. Effect of Unimolecular Decay Kinetics on the Interpretation of Appearance Potentials. J. Chem. Phys. 1959, 30, 191–211.

    CAS  Google Scholar 

  55. Holmes, J.L.; Terlouw, J.K. The Scope of Metastable Peak Shape Observations. Org. Mass Spectrom. 1980, 15, 383–396.

    CAS  Google Scholar 

  56. Williams, D.H. A Transition State Probe. Acc. Chem. Res. 1977, 10, 280–286.

    CAS  Google Scholar 

  57. Williams, D.H.; Hvistendahl, G. Kinetic Energy Release in Relation to Symmetry- Forbidden Reactions. J. Am. Chem. Soc. 1974, 96, 6753–6755.

    CAS  Google Scholar 

  58. Williams, D.H.; Hvistendahl, G. Kinetic Energy Release As a Mechanistic Probe. The Role of Orbital Symmetry. J. Am. Chem. Soc. 1974, 96, 6755–6757.

    CAS  Google Scholar 

  59. Hvistendahl, G.; Williams, D.H. Partitioning of Reverse Activation Energy Between Kinetic and Internal Energy in Reactions of Simple Organic Ions. J. Chem. Soc.,Perkin Trans. 2 1975, 881–885.

    CAS  Google Scholar 

  60. Hvistendahl, G.; Uggerud, E. Secondary Isotope Effect on Kinetic Energy Release and Reaction Symmetry. Org. Mass Spectrom. 1985, 20, 541–542.

    CAS  Google Scholar 

  61. Kim, K.C.; Beynon, J.H.; Cooks, R.G. Energy Partitioning by Mass Spectrometry. Chloroalkanes and Chloroalkenes. J. Chem. Phys. 1974, 61, 1305–1314.

    CAS  Google Scholar 

  62. Haney, M.A.; Franklin, J.L. Correlation of Excess Energies of Electron Impact Dissociations With the Translational Energies of the Products. J. Chem. Phys. 1968, 48, 4093–4097.

    CAS  Google Scholar 

  63. Cooks, R.G.; Williams, D.H. The Relative Rates of Fragmentation of Benzoyl Ions Generated Upon Electron Impact From Different Precursors. Chem. Commun. 1968, 627–629.

    CAS  Google Scholar 

  64. Lin, Y.N.; Rabinovitch, B.S. Degrees of Freedom Effect and Internal Energy Partitioning Upon Ion Decomposition. J. Phys. Chem. 1970, 74, 1769–1775.

    CAS  Google Scholar 

  65. Bente III., P.F.; McLafferty, F.W.; McAdoo, D.J.; Lifshitz, C. Internal Energy of Product Ions Formed in Mass Spectral Reactions. The Degrees of Freedom Effect. J. Phys. Chem. 1975, 79, 713–721.

    CAS  Google Scholar 

  66. Todd, J.F.J. Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int. J. Mass Spectrom. Ion. Proc. 1995, 142, 211–240.

    CAS  Google Scholar 

  67. Robinson, P.J.; Holbrook, K.A. Unimolecular Reactions, in Unimolecular Re-actions, Wiley: London, 1972; Chap. 9.

    Google Scholar 

  68. Ingemann, S.; Hammerum, S.; Derrick, P.J.; Fokkens, R.H.; Nibbering, N.M.M. Energy-Dependent Reversal of Secondary Isotope Effects on Simple Cleavage Reactions: Tertiary Amine Radical Cations With Deuterium at Remote Positions. Org. Mass Spectrom. 1989, 24, 885–889.

    CAS  Google Scholar 

  69. Lowry, T.H.; Schueller Richardson, K. Isotope Effects, in Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1976; Chap. 1.7.

    Google Scholar 

  70. Stringer, M.B.; Underwood, D.J.; Bowie, J.H.; Allison, C.E.; Donchi, K.F.; Derrick, P.J. Is the McLafferty Rearrangement of Ketones Concerted or Stepwise? The Application of Kinetic Isotope Effects. Org. Mass Spectrom. 1992, 27, 270–276.

    CAS  Google Scholar 

  71. Derrick, P.J. Isotope Effects in Fragmentation. Mass Spectrom. Rev. 1983, 2, 285–298.

    CAS  Google Scholar 

  72. Hvistendahl, G.; Uggerud, E. Deuterium Isotope Effects and Mechanism of the Gas-Phase Reaction [C3H7]+→[C3H5]++ H2. Org. Mass Spectrom. 1986, 21, 347–350.

    CAS  Google Scholar 

  73. Howe, I.; McLafferty, F.W. Unimolecular Decomposition of Toluene and Cycloheptatriene Molecular Ions. Variation of the Degree of Scrambling and Isotope Effect With Internal Energy. J. Am. Chem. Soc. 1971, 93, 99–105.

    Google Scholar 

  74. Bertrand, M.; Beynon, J.H.; Cooks, R.G. Isotope Effects Upon Hydrogen Atom Loss From Molecular Ions. Org. Mass Spectrom. 1973, 7, 193–201.

    CAS  Google Scholar 

  75. Lau, A.Y.K.; Solka, B.H.; Harrison, A.G. Isotope Effects and H/D Scrambling in the Fragmentation of Labeled Propenes. Org. Mass Spectrom. 1974, 9, 555–557.

    CAS  Google Scholar 

  76. Benoit, F.M.; Harrison, A.G. Hydrogen Migrations in Mass Spectrometry. I. The Loss of Olefin From Phenyl-n-Propyl Ether Following Electron Impact Ionization and Chemical Ionization. Org. Mass Spectrom. 1976, 11, 599–608.

    CAS  Google Scholar 

  77. Veith, H.J.; Gross, J.H. Alkene Loss From Metastable Methyleneimmonium Ions: Unusual Inverse Secondary Isotope Effect in Ion–Neutral Complex Intermediate Fragmentations. Org. Mass Spectrom. 1991, 26, 1097–1105.

    CAS  Google Scholar 

  78. Ingemann, S.; Kluft, E.; Nibbering, N.M.M.; Allison, C.E.; Derrick, P.J.; Hammerum, S. Time-Dependence of the Isotope Effects in the Unimolecular Dissociation of Tertiary Amine Molecular Ions. Org. Mass Spectrom. 1991, 26, 875–881.

    CAS  Google Scholar 

  79. Nacson, S.; Harrison, A.G. Dependence of Secondary Hydrogen/Deuterium Isotope Effects on Internal Energy. Org. Mass Spectrom. 1985, 20, 429–430.

    CAS  Google Scholar 

  80. Ingemann, S.; Hammerum, S.; Derrick, P.J. Secondary Hydrogen Isotope Effects on Simple Cleavage Reactions in the Gas Phase: The α-Cleavage of Tertiary Amine Cation Radicals. J. Am. Chem. Soc. 1988, 110, 3869–3873.

    CAS  Google Scholar 

  81. Rosenstock, H.M. The Measurement of Ionization and Appearance Potentials. Int. J. Mass Spectrom. Ion Phys. 1976, 20, 139–190.

    CAS  Google Scholar 

  82. Urban, B.; Bondybey, V.E. Multiphoton Photoelectron Spectroscopy: Watching Molecules Dissociate. Phys. Chem. Chem. Phys. 2001, 3, 1942–1944.

    CAS  Google Scholar 

  83. Nicholson, A.J.C. Measurement of Ionization Potentials by Electron Impact. J. Chem. Phys. 1958, 29, 1312–1318.

    CAS  Google Scholar 

  84. Barfield, A.F.; Wahrhaftig, A.L. Determination of Appearance Potentials by the Critical Slope Method. J. Chem. Phys. 1964, 41, 2947–2948.

    Google Scholar 

  85. Levin, R.D.; Lias, S.G. Ionization Potential and Appearance Potential Measurements, 1971–1981. National Standard Reference Data Series 1982, 71, 634 pp.

    Google Scholar 

  86. Harris, F.M.; Beynon, J.H. Photodissociation in Beams: Organic Ions, in Gas Phase Ion Chemistry – Ions and Light; Bowers, M.T. (ed.); Academic Press: New York, 1985; Vol. 3, Chap. 19, pp. 99–128.

    Google Scholar 

  87. Dunbar, R.C. Ion Photodissociation, in Gas Phase Ion Chemistry; Bowers, M.T. (ed.); Academic Press: New York, 1979; Vol. 2, Chap. 14, pp. 181–220.

    Google Scholar 

  88. Maeda, K.; Semeluk, G.P.; Lossing, F.P. A Two-Stage Double-Hemispherical Electron Energy Selector. Int. J. Mass Spectrom. Ion Phys. 1968, 1, 395–407.

    Google Scholar 

  89. Traeger, J.C.; McLoughlin, R.G. A Photoionization Study of the Energetics of the C7H7 + Ion Formed from C7H8 Precursors. Int. J. Mass Spectrom. Ion Phys. 1978, 27, 319–333.

    CAS  Google Scholar 

  90. Boesl, U. Laser MS for Environmental and Industrial Chemical Trace Analysis. J. Mass Spectrom. 2000, 35, 289–304.

    CAS  Google Scholar 

  91. Wendt, K.D.A. The New Generation of Resonant Laser Ionization Mass Spectrometers: Becoming Competitive for Selective Atomic Ultra-Trace Determination? Eur. J. Mass Spectrom. 2002, 8, 273–285.

    CAS  Google Scholar 

  92. Matsumoto, J.; Misawa, K.; Ishiuchi, S.I.; Suzuki, T.; Hayashi, S.I.; Fujii, M. On-Site and Real-Time Mass Spectrometer Utilizing the Resonance- Enhanced Multiphoton Ionization Technique. Shinku 2007, 50, 241–245.

    CAS  Google Scholar 

  93. Thanner, R.; Oser, H.; Grotheer, H.-H. Time-Resolved Monitoring of Aromatic Compounds in an Experimental Incinerator Using an Improved Jet- Resonance-Enhanced Multi-Photon Ionization System Jet-REMPI. Eur. Mass Spectrom. 1998, 4, 215–222.

    CAS  Google Scholar 

  94. Zenobi, R.; Zhan, Q.; Voumard, P. Multiphoton Ionization Spectroscopy in Surface Analysis and Laser Desorption MS. Mikrochimica Acta 1996, 124, 273–281.

    CAS  Google Scholar 

  95. Weickhardt, C.; Grun, C.; Grotemeyer, J. Fundamentals and Features of Analytical Laser MS With Ultrashort Laser Pulses. Eur. Mass Spectrom. 1998, 4, 239–244.

    CAS  Google Scholar 

  96. Turner, D.W.; Al Jobory, M.I. Determination of Ionization Potentials by Photoelectron Energy Measurement. J. Chem. Phys. 1962, 37, 3007–3008.

    CAS  Google Scholar 

  97. Müller-Dethlefs, K.; Sander, M.; Schlag, E.W. Two-Color Photoionization Resonance Spectroscopy of Nitric Oxide: Complete Separation of Rotational Levels of Nitrosyl Ion at the Ionization Threshold. Chem. Phys. Lett. 1984, 112, 291–294.

    Google Scholar 

  98. Müller-Dethlefs, K.; Sander, M.; Schlag, E.W. A Novel Method Capable of Resolving Rotational Ionic States by the Detection of Threshold Photoelectrons With a Resolution of 1.2 Cm–1. Z. Naturforsch. 1984, 39a, 1089–1091.

    Google Scholar 

  99. Schlag, E.W. ZEKE Spectroscopy; Cambridge Univ. Press: Cambridge, 1998.

    Google Scholar 

  100. Edqvist, O.; Lindholm, E.; Selin, L.E.; Åsbrink, L. Photoelectron Spectrum of Molecular Oxygen. Phys. Scr. 1970, 1, 25–30.

    CAS  Google Scholar 

  101. Zhu, L.; Johnson, P. Mass Analyzed Threshold Ionization Spectroscopy. J. Chem. Phys. 1991, 94, 5769–5771.

    CAS  Google Scholar 

  102. Weickhardt, C.; Moritz, F.; Grotemeyer, J. Time-of-Flight MS: State-of-the-Art in Chemical Analysis and Molecular Science. Mass Spectrom. Rev. 1997, 15, 139–162.

    Google Scholar 

  103. Gunzer, F.; Grotemeyer, J. New Features in the Mass Analyzed Threshold Ionization (MATI) Spectra of Alkyl Benzenes. Phys. Chem. Chem. Phys. 2002, 4, 5966–5972.

    CAS  Google Scholar 

  104. Peng, X.; Kong, W. Zero Energy Kinetic Electron and Mass-Analyzed Threshold Ionization Spectroscopy of Na×(NH3)n (n=1,2,and 4) Complexes. J. Chem. Phys. 2002, 117, 9306–9315.

    CAS  Google Scholar 

  105. Haines, S.R.; Dessent, C.E.H.; Müller- Dethlefs, K. Mass Analyzed Threshold Ionization of Phenol×CO: Intermolecular Binding Energies of a Hydrogen-Bonded Complex. J. Chem. Phys. 1999, 111, 1947–1954.

    CAS  Google Scholar 

  106. Lavanchy, A.; Houriet, R.; Gäumann, T. The Mass Spectrometric Fragmentation of N-Heptane. Org. Mass Spectrom. 1978, 13, 410–416.

    CAS  Google Scholar 

  107. Meisels, G.G.; Chen, C.T.; Giessner, B.G.; Emmel, R.H. Energy-Deposition Functions in Mass Spectrometry. J. Chem. Phys. 1972, 56, 793–800.

    CAS  Google Scholar 

  108. Herman, J.A.; Li, Y.-H.; Harrison, A.G. Energy Dependence of the Fragmentation of Some Isomeric C6H12 +. Ions. Org. Mass Spectrom. 1982, 17, 143–150.

    CAS  Google Scholar 

  109. Lias, S.G.; Liebman, J.F.; Levin, R.D. Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules. J. Phys. Chem. Ref. Data 1984, 13, 695–808.

    CAS  Google Scholar 

  110. Harrison, A.G. The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom. Rev. 1997, 16, 201–217.

    CAS  Google Scholar 

  111. Kukol, A.; Strehle, F.; Thielking, G.; Grützmacher, H.-F. Methyl Group Effect on the Proton Affinity of Methylated Acetophenones Studied by Two MS Techniques. Org. Mass Spectrom. 1993, 28, 1107–1110.

    CAS  Google Scholar 

  112. McMahon, T.B. Thermochemical Ladders: Scaling the Ramparts of Gaseous Ion Energetics. Int. J. Mass Spectrom. 2000, 200, 187–199.

    CAS  Google Scholar 

  113. Lias, S.G.; Bartmess, J.E.; Liebman, J.F.; Holmes, J.L.; Levin, R.D.; Mallard, W.G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data 1988, 17, Supplement 1, 861 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen H. Gross .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2011). Principles of Ionization and Ion Dissociation. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10711-5_2

Download citation

Publish with us

Policies and ethics