Skip to main content

Template-Based Synthesis of Nanorod or Nanowire Arrays

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter introduces the fundamentals of and various technical approaches developed for template-based synthesis of nanorod arrays. After a brief introduction to various concepts associated with the growth of nanorods, nanowires and nanobelts, the chapter focuses mainly on the most widely used and well established techniques for the template-based growth of nanorod arrays: electrochemical deposition, electrophoretic deposition, template filling via capillary force and centrifugation, and chemical conversion. In each section, the relevant fundamentals are first introduced, and then examples are given to illustrate the specific details of each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAM:

anodized alumina membrane

DC:

direct-current

DNA:

deoxyribonucleic acid

HRTEM:

high-resolution transmission electron microscope

ITO:

indium tin oxide

PC:

polycarbonate

PZT:

lead zirconate titanate

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

TEM:

transmission electron microscope

TEM:

transmission electron microscopy

References

  1. G.Z. Cao: Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College, London 2004)

    Google Scholar 

  2. Z.L. Wang: Nanowires and Nanobelts: Materials, Properties and Devices, Nanowires and Nonobelts of Functional Materials, Vol. 2 (Kluwer, Boston 2003)

    Google Scholar 

  3. Y. Xia, P. Yang, Y. Sun, Y. Wu, Y. Yin, F. Kim, H. Yan: One-dimensional nanostructures: Synthesis, characterization and applications, Adv. Mater. 15, 353–389 (2003)

    Google Scholar 

  4. A. Huczko: Template-based synthesis of nanomaterials, Appl. Phys. A 70, 365–376 (2000)

    Google Scholar 

  5. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed: Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105, 1025–1102 (2005)

    Google Scholar 

  6. X. Duan, C.M. Lieber: General synthesis of compound semiconductor nanowires, Adv. Mater. 12, 298–302 (2000)

    Google Scholar 

  7. M.P. Zach, K.H. Ng, R.M. Penner: Molybdenum nanowires by electrodeposition, Science 290, 2120–2123 (2000)

    Google Scholar 

  8. R.C. Furneaux, W.R. Rigby, A.P. Davidson: The formation of controlled-porosity membranes from anodically oxidized aluminium, Nature 337, 147–149 (1989)

    Google Scholar 

  9. R.L. Fleisher, P.B. Price, R.M. Walker: Nuclear Tracks in Solids (Univ. of California Press, Berkeley 1975)

    Google Scholar 

  10. R.J. Tonucci, B.L. Justus, A.J. Campillo, C.E. Ford: Nanochannel array glass, Science 258, 783–787 (1992)

    Google Scholar 

  11. G.E. Possin: A method for forming very small diameter wires, Rev. Sci. Instrum. 41, 772–774 (1970)

    Google Scholar 

  12. C. Wu, T. Bein: Conducting polyaniline filaments in a mesoporous channel host, Science 264, 1757–1759 (1994)

    Google Scholar 

  13. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)

    Google Scholar 

  14. P. Enzel, J.J. Zoller, T. Bein: Intrazeolite assembly and pyrolysis of polyacrylonitrile, J. Chem. Soc. Chem. Commun. 8, 633–635 (1992)

    Google Scholar 

  15. C. Guerret-Piecourt, Y. Le Bouar, A. Loiseau, H. Pascard: Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, Nature 372, 761–765 (1994)

    Google Scholar 

  16. P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex: Carbon nanotubes as removable templates for metal oxide nanocomposites, nanostructures, Nature 375, 564–567 (1995)

    Google Scholar 

  17. M. Knez, A.M. Bittner, F. Boes, C. Wege, H. Jeske, E. Maiâ, K. Kern: Biotemplate synthesis of 3-nm nickel and cobalt nanowires, Nano Lett. 3, 1079–1082 (2003)

    Google Scholar 

  18. R. Gasparac, P. Kohli, M.O.M.L. Trofin, C.R. Martin: Template synthesis of nano test tubes, Nano Lett. 4, 513–516 (2004)

    Google Scholar 

  19. C.F. Monson, A.T. Woolley: DNA-templated construction of copper nanowires, Nano Lett. 3, 359–363 (2003)

    Google Scholar 

  20. Y. Weizmann, F. Patolsky, I. Popov, I. Willner: Telomerase-generated templates for the growing of metal nanowires, Nano Lett. 4, 787–792 (2004)

    Google Scholar 

  21. A. Despic, V.P. Parkhuitik: Modern Aspects of Electrochemistry, Vol. 20 (Plenum, New York 1989)

    Google Scholar 

  22. D. Al Mawiawi, N. Coombs, M. Moskovits: Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size, J. Appl. Phys. 70, 4421–4425 (1991)

    Google Scholar 

  23. C.A. Foss, M.J. Tierney, C.R. Martin: Template-synthesis of infrared-transparent metal microcylinders: Comparison of optical properties with the predictions of effective medium theory, J. Phys. Chem. 96, 9001–9007 (1992)

    Google Scholar 

  24. A.J. Bard, L.R. Faulkner: Electrochemical Methods (Wiley, New York 1980)

    Google Scholar 

  25. J.B. Mohler, H.J. Sedusky: Electroplating for the Metallurgist, Engineer and Chemist (Chemical Publishing, New York 1951)

    Google Scholar 

  26. T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien: Fabrication and magnetic properties of arrays of metallic nanowires, Science 261, 1316–1319 (1993)

    Google Scholar 

  27. F.R.N. Nabarro, P.J. Jackson: Growth of crystal whiskers – A review. In: Growth and Perfection of Crystals, ed. by R.H. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York 1958) pp. 11–102

    Google Scholar 

  28. B.Z. Tang, H. Xu: Preparation, alignment and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes, Macromolecules 32, 2567–2569 (1999)

    Google Scholar 

  29. W.D. Williams, N. Giordano: Fabrication of 80 Å metal wires, Rev. Sci. Instrum. 55, 410–412 (1984)

    Google Scholar 

  30. C.G. Jin, G.W. Jiang, W.F. Liu, W.L. Cai, L.Z. Yao, Z. Yao, X.G. Li: Fabrication of large-area single crystal bismuth nanowire arrays, J. Mater. Chem. 13, 1743–1746 (2003)

    Google Scholar 

  31. M.E.T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter: Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Adv. Mater. 13, 62–65 (2001)

    Google Scholar 

  32. G. Yi, W. Schwarzacher: Single crystal superconductor nanowires by electrodeposition, Appl. Phys. Lett. 74, 1746–1748 (1999)

    Google Scholar 

  33. C.J. Brumlik, V.P. Menon, C.R. Martin: Synthesis of metal microtubule ensembles utilizing chemical, electrochemical and vacuum deposition techniques, J. Mater. Res. 268, 1174–1183 (1994)

    Google Scholar 

  34. C.J. Brumlik, C.R. Martin: Template synthesis of metal microtubules, J. Am. Chem. Soc. 113, 3174–3175 (1991)

    Google Scholar 

  35. C.J. Miller, C.A. Widrig, D.H. Charych, M. Majda: Microporous aluminum oxide films at electrodes. 4. Lateral charge transport in self-organized bilayer assemblies, J. Phys. Chem. 92, 1928–1936 (1988)

    Google Scholar 

  36. W. Han, S. Fan, Q. Li, Y. Hu: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science 277, 1287–1289 (1997)

    Google Scholar 

  37. G.O. Mallory, J.B. Hajdu (Eds.): Electroless Plating: Fundamentals and Applications (AESF, Orlando 1990)

    Google Scholar 

  38. C. Schönenberger, B.M.I. van der Zande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Krüger, A. Bachtold, R. Huber, H. Birk, U. Staufer: Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology, J. Phys. Chem. B 101, 5497–5505 (1997)

    Google Scholar 

  39. J.D. Klein, R.D. Herrick II, D. Palmer, M.J. Sailor, C.J. Brumlik, C.R. Martin: Electrochemical fabrication of cadmium chalcogenide microdiode arrays, Chem. Mater. 5, 902–904 (1993)

    Google Scholar 

  40. L.D. Hicks, M.S. Dresselhaus: Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 679–682 (1993)

    Google Scholar 

  41. M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga: Low-dimensional thermoelectric materials, Phys. Solid State 41, 679–682 (1999)

    Google Scholar 

  42. M.S. Sander, R. Gronsky, T. Sands, A.M. Stacy: Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates, Chem. Mater. 15, 335–339 (2003)

    Google Scholar 

  43. C. Lin, X. Xiang, C. Jia, W. Liu, W. Cai, L. Yao, X. Li: Electrochemical fabrication of large-area, ordered Bi_2Te_3 nanowire arrays, J. Phys. Chem. B 108, 1844–1847 (2004)

    Google Scholar 

  44. D.S. Xu, Y.J. Xu, D.P. Chen, G.L. Guo, L.L. Gui, Y.Q. Tang: Preparation of CdS single-crystal nanowires by electrochemically induced deposition, Adv. Mater. 12, 520–522 (2000)

    Google Scholar 

  45. C. Lin, G. Zhang, T. Qian, X. Li, Z. Yao: Large-area Sb_2Te_3 nanowire arrays, J. Phys. Chem. B 109, 1430–1432 (2005)

    Google Scholar 

  46. C. Jérôme, R. Jérôme: Electrochemical synthesis of polypyrrole nanowires, Angew. Chem. Int. Ed. 37, 2488–2490 (1998)

    Google Scholar 

  47. A.G. MacDiarmid: Nobel lecture: “Synthetic metals”: A novel role for organic polymers, Rev. Mod. Phys. 73, 701–712 (2001)

    Google Scholar 

  48. K. Doblhofer, K. Rajeshwar: Handbook of Conducting Polymers (Marcel Dekker, New York 1998), Chap. 20

    Google Scholar 

  49. L. Dauginet, A.-S. Duwez, R. Legras, S. Demoustier-Champagne: Surface modification of polycarbonate and poly(ethylene terephthalate) films and membranes by polyelectrolyte, Langmuir 17, 3952–3957 (2001)

    Google Scholar 

  50. C.R. Martin: Membrane-based synthesis of nanomaterials, Chem. Mater. 8, 1739–1746 (1996)

    Google Scholar 

  51. C.R. Martin: Template synthesis of polymeric and metal microtubules, Adv. Mater. 3, 457–459 (1991)

    Google Scholar 

  52. J.C. Hulteen, C.R. Martin: A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7, 1075–1087 (1997)

    Google Scholar 

  53. L. Liang, J. Liu, C.F. Windisch Jr., G.J. Exarhos, Y. Lin: Assembly of large arrays of oriented conducting polymer nanowires, Angew. Chem. Int. Ed. 41, 3665–3668 (2002)

    Google Scholar 

  54. K. Takahashi, S.J. Limmer, Y. Wang, G.Z. Cao: Growth and electrochemical properties of single-crystalline V2O5 nanorod arrays, Jpn. J. Appl. Phys. B 44, 662–668 (2005)

    Google Scholar 

  55. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen: Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 363, 123–128 (2002)

    Google Scholar 

  56. I. Zhitomirsky: Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects, Adv. Colloid Interf. Sci. 97, 279–317 (2002)

    Google Scholar 

  57. O.O. Van der Biest, L.J. Vandeperre: Electrophoretic deposition of materials, Annu. Rev. Mater. Sci. 29, 327–352 (1999)

    Google Scholar 

  58. P. Sarkar, P.S. Nicholson: Electrophoretic deposition (EPD): Mechanism, kinetics, and application to ceramics, J. Am. Ceram. Soc. 79, 1987–2002 (1996)

    Google Scholar 

  59. A.C. Pierre: Introduction to Sol-Gel Processing (Kluwer, Norwell 1998)

    Google Scholar 

  60. J.S. Reed: Introduction to the Principles of Ceramic Processing (Wiley, New York 1988)

    Google Scholar 

  61. R.J. Hunter: Zeta Potential in Colloid Science: Principles and Applications (Academic, London 1981)

    Google Scholar 

  62. S.J. Limmer, T.P. Chou, G.Z. Cao: A study on the growth of TiO2 using sol electrophoresis, J. Mater. Sci. 39, 895–901 (2004)

    Google Scholar 

  63. C.J. Brinker, G.W. Scherer: Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing (Academic, San Diego 1990)

    Google Scholar 

  64. J.D. Wright, N.A.J.M. Sommerdijk: Sol-Gel Materials: Chemistry and Applications (Gordon and Breach, Amsterdam 2001)

    Google Scholar 

  65. D.H. Everett: Basic Principles of Colloid Science (The Royal Society of Chemistry, London 1988)

    Google Scholar 

  66. W.D. Callister: Materials Science and Engineering: An Introduction (Wiley, New York 1997)

    Google Scholar 

  67. S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao: Electrophoretic growth of lead zirconate titanate nanorods, Adv. Mater. 13, 1269–1272 (2001)

    Google Scholar 

  68. S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao: Template-based growth of various oxide nanorods by sol-gel electrophoresis, Adv. Funct. Mater. 12, 59–64 (2002)

    Google Scholar 

  69. S.J. Limmer, G.Z. Cao: Sol-gel electrophoretic deposition for the growth of oxide nanorods, Adv. Mater. 15, 427–431 (2003)

    Google Scholar 

  70. Y.C. Wang, I.C. Leu, M.N. Hon: Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition, J. Mater. Chem. 12, 2439–2444 (2002)

    Google Scholar 

  71. Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires, Nano Lett. 2, 717–720 (2002)

    Google Scholar 

  72. C. Natarajan, G. Nogami: Cathodic electrodeposition of nanocrystalline titanium dioxide thin films, J. Electrochem. Soc. 143, 1547–1550 (1996)

    Google Scholar 

  73. B.B. Lakshmi, P.K. Dorhout, C.R. Martin: Sol-gel template synthesis of semiconductor nanostructures, Chem. Mater. 9, 857–863 (1997)

    Google Scholar 

  74. A. van der Drift: Evolutionary selection, a principle governing growth orientation in vapor-deposited layers, Philips Res. Rep. 22, 267–288 (1968)

    Google Scholar 

  75. G.Z. Cao, J.J. Schermer, W.J.P. van Enckevort, W.A.L.M. Elst, L.J. Giling: Growth of 100 textured diamond films by the addition of nitrogen, J. Appl. Phys. 79, 1357–1364 (1996)

    Google Scholar 

  76. M. Ohring: Materials Science of Thin Films (Academic, San Diego 2001)

    Google Scholar 

  77. D. Pan, Z. Shuyuan, Y. Chen, J.G. Hou: Hydrothermal preparation of long nanowires of vanadium oxide, J. Mater. Res. 17, 1981–1984 (2002)

    Google Scholar 

  78. V. Petkov, P.N. Trikalitis, E.S. Bozin, S.J.L. Billinge, T. Vogt, M.G. Kanatzidis: Structure of V2O5 ⋅ nH2O xerogel solved by the atomic pair distribution function technique, J. Am. Chem. Soc. 124, 10157–10162 (2002)

    Google Scholar 

  79. K. Takahashi, S.J. Limmer, Y. Wang, G.Z. Cao: Synthesis, electrochemical properties of single crystal V2O5 nanorod arrays by template-based electrodeposition, J. Phys. Chem. B 108, 9795–9800 (2004)

    Google Scholar 

  80. G.Z. Cao: Growth of oxide nanorod arrays through sol electrophoretic deposition, J. Phys. Chem. B 108, 19921–19931 (2004)

    Google Scholar 

  81. R.L. Penn, J.F. Banfield: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania, Geochim. Cosmochim. Acta 63, 1549–1557 (1999)

    Google Scholar 

  82. C.M. Chun, A. Navrotsky, I.A. Aksay: Aggregation growth of nanometer-sized BaTiO3 particles, Proc. Microsc. Microanal. (1995) pp. 188–189

    Google Scholar 

  83. J. Livage: Synthesis of polyoxovanadates via chimie douce, Coord. Chem. Rev. 178–180, 999–1018 (1998)

    Google Scholar 

  84. K.V. Saban, J. Thomas, P.A. Varughese, G. Varghese: Thermodynamics of crystal nucleation in an external electric field, Cryst. Res. Technol. 37, 1188–1199 (2002)

    Google Scholar 

  85. D. Grier, E. Ben-Jacob, R. Clarke, L.M. Sander: Morphology and microstructure in electrochemical deposition of zinc, Phys. Rev. Lett. 56, 1264–1267 (1986)

    Google Scholar 

  86. C.J. Li, Y.G. Guo, B.S. Li, C.R. Wang, L.J. Wan, C.L. Bai: Template synthesis of Sc@C82 (I) nanowires and nanotubes at room temperature, Adv. Mater. 17, 71–73 (2005)

    Google Scholar 

  87. Y.G. Guo, C.J. Li, L.J. Wan, D.M. Chen, C.R. Wang, C.L. Bai, Y.G. Wang: Well-defined fullerene nanowire arrays, Adv. Funct. Mater. 13, 626–630 (2003)

    Google Scholar 

  88. B.B. Lakshmi, C.J. Patrissi, C.R. Martin: Sol-gel template synthesis of semiconductor oxide micro- and nanostructures, Chem. Mater. 9, 2544–2550 (1997)

    Google Scholar 

  89. Q. Lu, F. Gao, S. Komarneni, T.E. Mallouk: Ordered SBA-15 nanorod arrays inside a porous alumina membrane, J. Am. Chem. Soc. 126, 8650–8651 (2004)

    Google Scholar 

  90. J.S. Reed: Introduction to Principles of Ceramic Processing (Wiley, New York 1988)

    Google Scholar 

  91. C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis, C.B. Prater: Nanowire array composite, Science 263, 800–802 (1994)

    Google Scholar 

  92. Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying: Processing and characterization of single-crystalline ultrafine bismuth nanowires, Chem. Mater. 11, 1659–1665 (1999)

    Google Scholar 

  93. E.G. Wolff, T.D. Coskren: Growth, morphology of magnesium oxide whiskers, J. Am. Ceram. Soc. 48, 279–285 (1965)

    Google Scholar 

  94. W. Liang, C.R. Martin: Template-synthesized polyacetylene fibrils show enhanced supermolecular order, J. Am. Chem. Soc. 112, 9666–9668 (1990)

    Google Scholar 

  95. S.M. Marinakos, L.C. Brousseau III, A. Jones, D.L. Feldheim: Template synthesis of one-dimensional Au, Au-poly(pyrrole) and poly(pyrrole) nanoparticle arrays, Chem. Mater. 10, 1214–1219 (1998)

    Google Scholar 

  96. H.D. Sun, Z.K. Tang, J. Chen, G. Li: Polarized Raman spectra of single-wall carbon nanotubes mono-dispersed in channels of AlPO4-5 single crystals, Solid State Commun. 109, 365–369 (1999)

    Google Scholar 

  97. Z. Cai, J. Lei, W. Liang, V. Menon, C.R. Martin: Molecular and supermolecular origins of enhanced electronic conductivity in template-synthesized polyheterocyclic fibrils. 1. Supermolecular effects, Chem. Mater. 3, 960–967 (1991)

    Google Scholar 

  98. Y.J. Han, J.M. Kim, G.D. Stucky: Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15, Chem. Mater. 12, 2068–2069 (2000)

    Google Scholar 

  99. J. Liu, G.E. Fryxell, M. Qian, L.-Q. Wang, Y. Wang: Interfacial chemistry in self-assembled nanoscale materials with structural ordering, Pure Appl. Chem. 72, 269–279 (2000)

    Google Scholar 

  100. L. Chen, P.J. Klar, W. Heimbrodt, F. Brieler, M. Fröba: Towards ordered arrays of magnetic semiconductor quantum wires, Appl. Phys. Lett. 76, 3531–3533 (2000)

    Google Scholar 

  101. T. Wen, J. Zhang, T.P. Chou, S.J. Limmer, G.Z. Cao: Template-based growth of oxide nanorod arrays by centrifugation, J. Sol-Gel Sci. Tech. 33, 193–200 (2005)

    Google Scholar 

  102. B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia: Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. 123, 11500–11501 (2001)

    Google Scholar 

  103. E.W. Wong, B.W. Maynor, L.D. Burns, C.M. Lieber: Growth of metal carbide nanotubes, nanorods, Chem. Mater. 8, 2041–2046 (1996)

    Google Scholar 

  104. Y. Li, G.S. Cheng, L.D. Zhang: Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes, J. Mater. Res. 15, 2305–2308 (2000)

    Google Scholar 

  105. C.M. Zelenski, P.K. Dorhout: The template synthesis of monodisperse microscale nanofibers, nanotubules of MoS2, J. Am. Chem. Soc. 120, 734–742 (1998)

    Google Scholar 

  106. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph: DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 391, 775–778 (1998)

    Google Scholar 

  107. J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, Y. Qian: Polymer-controlled growth of CdS nanowires, Adv. Mater. 12, 1348–1351 (2000)

    Google Scholar 

  108. Y. Wang, K. Takahashi, H.M. Shang, G.Z. Cao: Synthesis, electrochemical properties of vanadium pentoxide nanotube arrays, J. Phys. Chem. B109, 3085–3088 (2005)

    Google Scholar 

  109. K. Takahashi, Y. Wang, G.Z. Cao: Ni-V2O5⋅ n H2O core-shell nanocable arrays for enhanced electrochemical intercalation, J. Phys. Chem. B 109, 48–51 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huamei (Mary) Shang or Guozhong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Shang, H.(., Cao, G. (2010). Template-Based Synthesis of Nanorod or Nanowire Arrays. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics