Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides an overview of recent research on inorganic nanowires, particularly metallic and semiconducting nanowires. Nanowires are one-dimensional, anisotropic structures, small in diameter, and large in surface-to-volume ratio. Thus, their physical properties are different than those of structures of different scale and dimensionality. While the study of nanowires is particularly challenging, scientists have made immense progress in both developing synthetic methodologies for the fabrication of nanowires, and developing instrumentation for their characterization. The chapter is divided into three main sections: Sect. 4.1 the synthesis, Sect. 4.2 the characterization and physical properties, and Sect. 4.3 the applications of nanowires. Yet, the reader will discover many links that make these aspects of nanoscience intimately interdepent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

AFM:

atomic force microscope

AFM:

atomic force microscopy

CVD:

chemical vapor deposition

DC:

direct-current

DNA:

deoxyribonucleic acid

DSC:

differential scanning calorimetry

EELS:

electron energy loss spectra

EFM:

electric field gradient microscopy

EFM:

electrostatic force microscopy

FE:

finite element

FET:

field-effect transistor

HOPG:

highly oriented pyrolytic graphite

HRTEM:

high-resolution transmission electron microscope

MFM:

magnetic field microscopy

MFM:

magnetic force microscope

MFM:

magnetic force microscopy

NSOM:

near-field scanning optical microscopy

PMMA:

poly(methyl methacrylate)

PS:

polystyrene

PZT:

lead zirconate titanate

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

STM:

scanning tunneling microscope

STM:

scanning tunneling microscopy

SThM:

scanning thermal microscope

TEM:

transmission electron microscope

TEM:

transmission electron microscopy

References

  1. R.P. Feynman: Thereʼs plenty of room at the bottom, Caltech Eng. Sci. 23, 22 (1960)

    Google Scholar 

  2. Y. Mao, S.S. Wong: General, room-temperature method for the synthesis of isolated as well as arrays of single-crystalline ABO4-type nanorods, J. Am. Chem. Soc. 126, 15245–15252 (2004)

    Article  Google Scholar 

  3. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph: DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 391, 775–778 (1998)

    Article  Google Scholar 

  4. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, U. Gösele: Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phys. 91, 3243–3247 (2002)

    Article  Google Scholar 

  5. G.L. Hornyak, C.J. Patrissi, C.M. Martin: Fabrication, characterization and optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell–Garnett limit, J. Phys. Chem. B 101, 1548–1555 (1997)

    Article  Google Scholar 

  6. X.Y. Zhang, L.D. Zhang, Y. Lei, L.X. Zhao, Y.Q. Mao: Fabrication and characterization of highly ordered Au nanowire arrays, J. Mater. Chem. 11, 1732–1734 (2001)

    Article  Google Scholar 

  7. Y.-T. Cheng, A.M. Weiner, C.A. Wong, M.P. Balogh, M.J. Lukitsch: Stress-induced growth of bismuth nanowires, Appl. Phys. Lett. 81, 3248–3250 (2002)

    Article  Google Scholar 

  8. J. Heremans, C.M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield: Bismuth nanowire arrays: Synthesis, galvanomagnetic properties, Phys. Rev. B 61, 2921–2930 (2000)

    Article  Google Scholar 

  9. L. Piraux, S. Dubois, J.L. Duvail, A. Radulescu, S. Demoustier-Champagne, E. Ferain, R. Legras: Fabrication and properties of organic, metal nanocylinders in nanoporous membranes, J. Mater. Res. 14, 3042–3050 (1999)

    Article  Google Scholar 

  10. K. Hong, F.Y. Yang, K. Liu, D.H. Reich, P.C. Searson, C.L. Chien, F.F. Balakirev, G.S. Boebinger: Giant positive magnetoresistance of Bi nanowire arrays in high magnetic fields, J. Appl. Phys. 85, 6184–6186 (1999)

    Article  Google Scholar 

  11. A.J. Yin, J. Li, W. Jian, A.J. Bennett, J.M. Xu: Fabrication of highly ordered metallic nanowire arrays by electrodeposition, Appl. Phys. Lett. 79, 1039–1041 (2001)

    Article  Google Scholar 

  12. Z. Zhang, J.Y. Ying, M.S. Dresselhaus: Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process, J. Mater. Res. 13, 1745–1748 (1998)

    Article  Google Scholar 

  13. Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying: Processing and characterization of single-crystalline ultrafine bismuth nanowires, Chem. Mater. 11, 1659–1665 (1999)

    Article  Google Scholar 

  14. T.E. Huber, M.J. Graf, P. Constant: Processing and characterization of high-conductance bismuth wire array composites, J. Mater. Res. 15, 1816–1821 (2000)

    Article  Google Scholar 

  15. L. Li, G. Li, Y. Zhang, Y. Yang, L. Zhang: Pulsed electrodeposition of large-area, ordered Bi1-xSbx nanowire arrays from aqueous solutions, J. Phys. Chem. B 108, 19380–19383 (2004)

    Article  Google Scholar 

  16. M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy: Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates, Adv. Mater. 14, 665–667 (2002)

    Article  Google Scholar 

  17. M. Chen, Y. Xie, J. Lu, Y.J. Xiong, S.Y. Zhang, Y.T. Qian, X.M. Liu: Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique, J. Mater. Chem. 12, 748–753 (2002)

    Article  Google Scholar 

  18. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, Y. Tang: Preparation of CdS single-crystal nanowires by electrochemically induced deposition, Adv. Mater. 12, 520–522 (2000)

    Article  Google Scholar 

  19. D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu: Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates, J. Phys. Chem. 100, 14037–14047 (1996)

    Article  Google Scholar 

  20. L. Manna, E.C. Scher, A.P. Alivisatos: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc. 122, 12700–12706 (2000)

    Article  Google Scholar 

  21. D. Routkevitch, A.A. Tager, J. Haruyama, D. Al-Mawlawi, M. Moskovits, J.M. Xu: Nonlithographic nano-wire arrays: fabrication, physics, and device applications, IEEE Trans. Electron. Dev. 43, 1646–1658 (1996)

    Article  Google Scholar 

  22. D.S. Xu, D.P. Chen, Y.J. Xu, X.S. Shi, G.L. Guo, L.L. Gui, Y.Q. Tang: Preparation of II–VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates, Pure Appl. Chem. 72, 127–135 (2000)

    Article  Google Scholar 

  23. R. Adelung, F. Ernst, A. Scott, M. Tabib-Azar, L. Kipp, M. Skibowski, S. Hollensteiner, E. Spiecker, W. Jäger, S. Gunst, A. Klein, W. Jägermann, V. Zaporojtchenko, F. Faupel: Self-assembled nanowire networks by deposition of copper onto layered-crystal surfaces, Adv. Mater. 14, 1056–1061 (2002)

    Article  Google Scholar 

  24. T. Gao, G.W. Meng, J. Zhang, Y.W. Wang, C.H. Liang, J.C. Fan, L.D. Zhang: Template synthesis of single-crystal Cu nanowire arrays by electrodeposition, Appl. Phys. A 73, 251–254 (2001)

    Article  Google Scholar 

  25. D. Al-Mawlawi, N. Coombs, M. Moskovits: Magnetic-properties of Fe deposited into anodic aluminum-oxide pores as a function of particle-size, J. Appl. Phys. 70, 4421–4425 (1991)

    Article  Google Scholar 

  26. F. Li, R.M. Metzger: Activation volume of α-Fe particles in alumite films, J. Appl. Phys. 81, 3806–3808 (1997)

    Article  Google Scholar 

  27. A. Sugawara, T. Coyle, G.G. Hembree, M.R. Scheinfein: Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates, Appl. Phys. Lett. 70, 1043–1045 (1997)

    Article  Google Scholar 

  28. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo, Y.Q. Mao: Large-scale synthesis of single crystalline gallium nitride nanowires, Appl. Phys. Lett. 75, 2455–2457 (1999)

    Article  Google Scholar 

  29. G.S. Cheng, L.D. Zhang, S.H. Chen, Y. Li, L. Li, X.G. Zhu, Y. Zhu, G.T. Fei, Y.Q. Mao: Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina, J. Mater. Res. 15, 347–350 (2000)

    Article  Google Scholar 

  30. Y. Huang, X. Duan, Y. Cui, C.M. Lieber: Gallium nitride nanowire nanodevices, Nano Lett. 2, 101–104 (2002)

    Article  Google Scholar 

  31. X. Duan, C.M. Lieber: Laser-assisted catalytic growth of single crystal GaN nanowires, J. Am. Chem. Soc. 122, 188–189 (2000)

    Article  Google Scholar 

  32. A.D. Berry, R.J. Tonucci, M. Fatemi: Fabrication of GaAs, InAs wires in nanochannel glass, Appl. Phys. Lett. 69, 2846–2848 (1996)

    Article  Google Scholar 

  33. J.R. Heath, F.K. LeGoues: A liquid solution synthesis of single-crystal germanium quantum wires, Chem. Phys. Lett. 208, 263–268 (1993)

    Article  Google Scholar 

  34. Y. Wu, P. Yang: Germanium nanowire growth via simple vapor transport, Chem. Mater. 12, 605–607 (2000)

    Article  Google Scholar 

  35. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee: Germanium nanowires sheathed with an oxide layer, Phys. Rev. B 61, 4518–4521 (2000)

    Article  Google Scholar 

  36. S.J. May, J.-G. Zheng, B.W. Wessels, L.J. Lauhon: Dendritic nanowire growth mediated by a self-assembled catalyst, Adv. Mater. 17, 598–602 (2005)

    Article  Google Scholar 

  37. S. Han, C. Li, Z. Liu, B. Lei, D. Zhang, W. Jin, X. Liu, T. Tang, C. Zhou: Transition metal oxide core-shell nanowires: Generic synthesis and transport studies, Nano Lett. 4, 1241–1246 (2004)

    Article  Google Scholar 

  38. M.P. Zach, K.H. Ng, R.M. Penner: Molybdenum nanowires by electrodeposition, Science 290, 2120–2123 (2000)

    Article  Google Scholar 

  39. L. Sun, P.C. Searson, L. Chien: Electrochemical deposition of nickel nanowire arrays in single-crystal mica films, Appl. Phys. Lett. 74, 2803–2805 (1999)

    Article  Google Scholar 

  40. K. Nielsch, R. Wehrspohn, S. Fischer, H. Kronmüller, J. Barthel, J. Kirschner, U. Gösele: Magnetic properties of 100 nm nickel nanowire arrays obtained from ordered porous alumina templates, MRS Symp. Proc. 636, D1.9–1–D1.9–6 (2001)

    Google Scholar 

  41. Y. Wang, X. Jiang, T. Herricks, Y. Xia: Single crystalline nanowires of lead: Large-scale synthesis, mechanistic studies, and transport measurements, J. Phys. Chem. B 108, 8631–8640 (2004)

    Article  Google Scholar 

  42. E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M.S. Eisen, S. Berger: Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, cubes, Nano Lett. 3, 857–862 (2003)

    Article  Google Scholar 

  43. W. Lu, P. Gao, W.B. Jian, Z.L. Wang, J. Fang: Perfect orientation ordered in-situ one-dimensional self-assembly of Mn-doped PbSe nanocrystals, J. Am. Chem. Soc. 126, 14816–14821 (2004)

    Article  Google Scholar 

  44. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner: Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 293, 2227–2231 (2001)

    Article  Google Scholar 

  45. B. Gates, B. Mayers, B. Cattle, Y. Xia: Synthesis, characterization of uniform nanowires of trigonal selenium, Adv. Funct. Mater. 12, 219–227 (2002)

    Article  Google Scholar 

  46. C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis, C.B. Prater: Nanowire array composites, Science 263, 800–802 (1994)

    Article  Google Scholar 

  47. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber: Diameter-controlled synthesis of single crystal silicon nanowires, Appl. Phys. Lett. 78, 2214–2216 (2001)

    Article  Google Scholar 

  48. A.M. Morales, C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208–211 (1998)

    Article  Google Scholar 

  49. N. Wang, Y.F. Zhang, Y.H. Tang, C.S. Lee, S.T. Lee: SiO2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys. Lett. 73, 3902–3904 (1998)

    Article  Google Scholar 

  50. M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, E.C. Dickey: Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method, Appl. Phys. Lett. 79, 1546–1548 (2001)

    Article  Google Scholar 

  51. S. Vaddiraju, H. Chandrasekaran, M.K. Sunkara: Vapor phase synthesis of tungsten nanowires, J. Am. Chem. Soc. 125, 10792–10793 (2003)

    Article  Google Scholar 

  52. J.P. Heremans, C.M. Thrush, D.T. Morelli, M.-C. Wu: Thermoelectric power of bismuth nanocomposites, Phys. Rev. Lett. 88, 216801–1–216801–4 (2002)

    Article  Google Scholar 

  53. Y. Li, G.S. Cheng, L.D. Zhang: Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes, J. Mater. Res. 15, 2305–2308 (2000)

    Article  Google Scholar 

  54. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi: Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater. 12, 323–331 (2002)

    Article  Google Scholar 

  55. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen: Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 363, 123–128 (2002)

    Article  Google Scholar 

  56. M.S. Dresselhaus, Y.-M. Lin, O. Rabin, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, G.G. Samsonidze, G. Dresselhaus: Nanowires and nanotubes, Mater. Sci. Eng. C 23, 129–140 (2003), also in: Current trends in nanotechnologies: From materials to systems, Eur. Mater. Res. Soc. Symp. Proc., Vol. 140, ed. by W. Jantsch, H. Grimmeiss, G. Marietta (Elsevier, Amsterdam 2002)

    Article  Google Scholar 

  57. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Book  Google Scholar 

  58. M.S. Dresselhaus, G. Dresselhaus, P. Avouris: Carbon nanotubes: Synthesis, structure, properties and applications, Springer Ser. Top. Appl. Phys. 80, 1–447 (2001)

    Google Scholar 

  59. R.C. Haddon: Special issue on carbon nanotubes, Acc. Chem. Res. 35, 997–1113 (2002)

    Article  Google Scholar 

  60. Y.-M. Lin, X. Sun, S. Cronin, Z. Zhang, J.Y. Ying, M.S. Dresselhaus: Fabrication, transport properties of Te-doped bismuth nanowire arrays. In: Molecular Electronics: MRS Symposium Proceedings, Vol. 582, ed. by S.T. Pantelides, M.A. Reed, J. Murday, A. Aviran (Materials Research Society Press, Pittsburgh 2000) pp. 1–6, Chap. H10.3

    Google Scholar 

  61. C.R. Martin: Nanomaterials: A membrane-based synthetic approach, Science 266, 1961–1966 (1994)

    Article  Google Scholar 

  62. G.A. Ozin: Nanochemistry: synthesis in diminishing dimensions, Adv. Mater. 4, 612–649 (1992)

    Article  Google Scholar 

  63. R.J. Tonucci, B.L. Justus, A.J. Campillo, C.E. Ford: Nanochannel array glass, Science 258, 783–785 (1992)

    Article  Google Scholar 

  64. J.Y. Ying: Nanoporous systems and templates, Sci. Spec. 18, 56–63 (1999)

    Google Scholar 

  65. J.W. Diggle, T.C. Downie, C.W. Goulding: Anodic oxide films on aluminum, Chem. Rev. 69, 365–405 (1969)

    Article  Google Scholar 

  66. J.P. OʼSullivan, G.C. Wood: The morphology and mechanism of formation of porous anodic films on aluminum, Proc. R. Soc. Lond. A 317, 511–543 (1970)

    Article  Google Scholar 

  67. A.P. Li, F. Müller, A. Birner, K. Neilsch, U. Gösele: Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84, 6023–6026 (1998)

    Article  Google Scholar 

  68. J.P. Sullivan, G.C. Wood: The morphology, mechanism of formation of porous anodic films on aluminum, Proc. R. Soc. Lond. A 317, 511–543 (1970)

    Article  Google Scholar 

  69. O. Jessensky, F. Müller, U. Gösele: Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 72, 1173–1175 (1998)

    Article  Google Scholar 

  70. F. Li, L. Zhang, R.M. Metzger: On the growth of highly ordered pores in anodized aluminum oxide, Chem. Mater. 10, 2470–2480 (1998)

    Article  Google Scholar 

  71. H. Masuda, M. Satoh: Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Jpn. J. Appl. Phys. 35, L126–L129 (1996)

    Article  Google Scholar 

  72. E. Ferain, R. Legras: Track-etched membrane – dynamics of pore formation, Nucl. Instrum. Methods B 84, 331–336 (1993)

    Article  Google Scholar 

  73. A. Blondel, J.P. Meier, B. Doudin, J.-P. Ansermet: Giant magnetoresistance of nanowires of multilayers, Appl. Phys. Lett. 65, 3019–3021 (1994)

    Article  Google Scholar 

  74. K. Liu, C.L. Chien, P.C. Searson, Y.Z. Kui: Structural and magneto-transport properties of electrodeposited bismuth nanowires, Appl. Phys. Lett. 73, 1436–1438 (1998)

    Article  Google Scholar 

  75. C.A. Huber, T.E. Huber: A novel microstructure: semiconductor-impregnated porous Vycor glass, J. Appl. Phys. 64, 6588–6590 (1988)

    Article  Google Scholar 

  76. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker: A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  Google Scholar 

  77. C.-G. Wu, T. Bein: Conducting polyaniline filaments in a mesoporous channel host, Science 264, 1757–1759 (1994)

    Article  Google Scholar 

  78. Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, J.P. Heremans: Transport properties of Bi nanowire arrays, Appl. Phys. Lett. 76, 3944–3946 (2000)

    Article  Google Scholar 

  79. T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell: Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates, Science 290, 2126–2129 (2000)

    Article  Google Scholar 

  80. A.W. Adamson: Physical Chemistry of Surfaces (Wiley, New York 1982) p. 338

    Google Scholar 

  81. R. Ferré, K. Ounadjela, J.M. George, L. Piraux, S. Dubois: Magnetization processes in nickel and cobalt electrodeposited nanowires, Phys. Rev. B 56, 14066–14075 (1997)

    Article  Google Scholar 

  82. H. Zeng, M. Zheng, R. Skomski, D.J. Sellmyer, Y. Liu, L. Menon, S. Bandyopadhyay: Magnetic properties of self-assembled Co nanowires of varying length and diameter, J. Appl. Phys. 87, 4718–4720 (2000)

    Article  Google Scholar 

  83. Y. Peng, H.L. Zhang, S.-L. Pan, H.-L. Li: Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film, J. Appl. Phys. 87, 7405–7408 (2000)

    Article  Google Scholar 

  84. L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert: Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett. 65, 2484–2486 (1994)

    Article  Google Scholar 

  85. S. Bhattacharrya, S.K. Saha, D. Chakravorty: Nanowire formation in a polymeric film, Appl. Phys. Lett. 76, 3896–3898 (2000)

    Article  Google Scholar 

  86. G. Yi, W. Schwarzacher: Single crystal superconductor nanowires by electrodeposition, Appl. Phys. Lett. 74, 1746–1748 (1999)

    Article  Google Scholar 

  87. D. Al-Mawlawi, C.Z. Liu, M. Moskovits: Nanowires formed in anodic oxide nanotemplates, J. Mater. Res. 9, 1014–1018 (1994)

    Article  Google Scholar 

  88. R.S. Wagner, W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 4, 89–90 (1964)

    Article  Google Scholar 

  89. Y. Wu, P. Yang: Direct observation of vapor-liquid-solid nanowire growth, J. Am. Chem. Soc. 123, 3165–3166 (2001)

    Article  Google Scholar 

  90. Y. Wu, R. Fan, P. Yang: Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires, Nano Lett. 2, 83–86 (2002)

    Article  Google Scholar 

  91. S. Sharma, M.K. Sunkara, R. Miranda, G. Lian, E.C. Dickey: A novel low temperature synthesis method for semiconductor nanowires. In: Synthesis, Functional Properties and Applications of Nanostructures: Mat. Res. Soc. Symp. Proc., San Francisco, Vol. 676, ed. by H.W. Hahn, D.L. Feldheim, C.P. Kubiak, R. Tannenbaum, R.W. Siegel (Materials Research Society Press, Pittsburgh 2001) p. Y1.6

    Google Scholar 

  92. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber: Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415, 617–620 (2002)

    Article  Google Scholar 

  93. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature 430, 61–65 (2004)

    Article  Google Scholar 

  94. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson: One-dimensional steeplechase for electrons realized, Nano Lett. 2, 87–89 (2002)

    Article  Google Scholar 

  95. N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, S.T. Lee: Nucleation and growth of Si nanowires from silicon oxide, Phys. Rev. B 58, R16024–R16026 (1998)

    Article  Google Scholar 

  96. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee: One-dimensional growth mechanism of crystalline silicon nanowires, J. Cryst. Growth 197, 136–140 (1999)

    Article  Google Scholar 

  97. S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, Y.W. Chung: Semiconductor nanowires from oxides, J. Mater. Res. 14, 4503–4507 (1999)

    Article  Google Scholar 

  98. D.D.D. Ma, C.S. Lee, Y. Lifshitz, S.T. Lee: Periodic array of intramolecular junctions of silicon nanowires, Appl. Phys. Lett. 81, 3233–3235 (2002)

    Article  Google Scholar 

  99. D. Whang, S. Jin, C.M. Lieber: Large-scale hierarchical organization of nanowires for functional nanosystems, Jpn. J. Appl. Phys. 43, 4465–4470 (2004)

    Article  Google Scholar 

  100. M.P. Zach, K. Inazu, K.H. Ng, J.C. Hemminger, R.M. Penner: Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration, Chem. Mater. 14, 3206–3216 (2002)

    Article  Google Scholar 

  101. B. Gates, Y. Yin, Y. Xia: A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm, J. Am. Chem. Soc. 122, 12582–12583 (2000)

    Article  Google Scholar 

  102. B. Mayers, B. Gates, Y. Yin, Y. Xia: Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process, Adv. Mater. 13, 1380–1384 (2001)

    Article  Google Scholar 

  103. B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia: Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. 123, 11500–11501 (2001)

    Article  Google Scholar 

  104. B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang, Y. Xia: Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature, Adv. Funct. Mater. 12, 679–686 (2002)

    Article  Google Scholar 

  105. H. Yu, P.C. Gibbons, W.E. Buhro: Bismuth, tellurium and bismuth telluride nanowires, J. Mater. Chem. 14, 595–602 (2004)

    Article  Google Scholar 

  106. X. Peng, J. Wickham, A.P. Alivisatos: Kinetics of II–VI, III–V colloidal semiconductor nanocrystal growth: ʼFocusingʼ of size distributions, J. Am. Chem. Soc. 120, 5343–5344 (1998)

    Article  Google Scholar 

  107. J.Y. Lao, J.G. Wen, Z.F. Ren: Hierarchical ZnO nanostructures, Nano Lett. 2, 1287–1291 (2002)

    Article  Google Scholar 

  108. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren: ZnO nanobridges and nanonails, Nano Lett. 3, 235–238 (2003)

    Article  Google Scholar 

  109. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolto, P.M. Petroff, J.R. Heath: Ultrahigh-density nanowire lattices and circuits, Science 300, 112–115 (2003)

    Article  Google Scholar 

  110. S.R. Nicewarner-Peña, R.G. Freeman, B.D. Reiss, L. He, D.J. Peña, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan: Submicrometer metallic barcodes, Science 294, 137–141 (2001)

    Article  Google Scholar 

  111. L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber: Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420, 57–61 (2002)

    Article  Google Scholar 

  112. Z.L. Wang, Z.R. Dai, R.P. Gao, Z.G. Bai, J.L. Gole: Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure and mechanical properties, Appl. Phys. Lett. 77, 3349–3351 (2000)

    Article  Google Scholar 

  113. P. Yang, F. Kim: Langmuir–Blodgett assembly of one-dimensional nanostructures, ChemPhysChem 3, 503–506 (2002)

    Article  Google Scholar 

  114. B. Messer, J.H. Song, P. Yang: Microchannel networks for nanowire patterning, J. Am. Chem. Soc. 122, 10232–10233 (2000)

    Article  Google Scholar 

  115. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk: Electric-field assisted assembly and alignment of metallic nanowires, Appl. Phys. Lett. 77, 1399–1401 (2000)

    Article  Google Scholar 

  116. S. Jin, D.M. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, C.M. Lieber: Scalable interconnection and integration of nanowire devices without registration, Nano Lett. 4, 915–919 (2004)

    Article  Google Scholar 

  117. T. Kuykendall, P.J. Pauzauskie, Y.F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P.D. Yang: Crystallographic alignment of high-density gallium nitride nanowire arrays, Nat. Mater. 3, 524–528 (2004)

    Article  Google Scholar 

  118. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura: Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71, 2770–2772 (1997)

    Article  Google Scholar 

  119. O. Rabin, P.R. Herz, S.B. Cronin, Y.-M. Lin, A.I. Akinwande, M.S. Dresselhaus: Nanofabrication using self-assembled alumina templates. In: Nonlithographic and Lithographic Methods for Nanofabrication: MRS Symposium Proceedings, Boston, Vol. 636, ed. by J.A. Rogers, A. Karim, L. Merhari, D. Norris, Y. Xia (Materials Research Society Press, Pittsburgh 2001) pp. D4.7–1–D4.7–6

    Google Scholar 

  120. O. Rabin, P.R. Herz, Y.-M. Lin, A.I. Akinwande, S.B. Cronin, M.S. Dresselhaus: Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass, Adv. Funct. Mater. 13, 631–638 (2003)

    Article  Google Scholar 

  121. O. Rabin, P.R. Herz, Y.-M. Lin, S.B. Cronin, A.I. Akinwande, M.S. Dresselhaus: Arrays of nanowires on silicon wafers, 21st Int. Conf. Thermoelectr. Proc. ICT ʼ02 Long Beach (IEEE, Piscataway 2002) pp. 276–279

    Google Scholar 

  122. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang: Room-temperature ultraviolet nanowire nanolasers, Science 292, 1897–1899 (2001)

    Article  Google Scholar 

  123. Y.H. Tang, Y.F. Zhang, N. Wang, C.S. Lee, X.D. Han, I. Bello, S.T. Lee: Morphology of Si nanowires synthesized by high-temperature laser ablation, J. Appl. Phys. 85, 7981–7983 (1999)

    Article  Google Scholar 

  124. Y. Ding, Z.L. Wang: Structure analysis of nanowires and nanobelts by transmission electron microscopy, J. Phys. Chem. B 108, 12280–12291 (2004)

    Article  Google Scholar 

  125. S.B. Cronin, Y.-M. Lin, O. Rabin, M.R. Black, G. Dresselhaus, M.S. Dresselhaus, P.L. Gai: Bismuth nanowires for potential applications in nanoscale electronics technology, Microsc. Microanal. 8, 58–63 (2002)

    Article  Google Scholar 

  126. M.S. Sander, R. Gronsky, Y.-M. Lin, M.S. Dresselhaus: Plasmon excitation modes in nanowire arrays, J. Appl. Phys. 89, 2733–2736 (2001)

    Article  Google Scholar 

  127. L. Venkataraman, C.M. Lieber: Molybdenum selenide molecular wires as one-dimensional conductors, Phys. Rev. Lett. 83, 5334–5337 (1999)

    Article  Google Scholar 

  128. A. Majumdar: Scanning thermal microscopy, Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    Article  Google Scholar 

  129. K.M. Unruh, T.E. Huber, C.A. Huber: Melting and freezing behavior of indium metal in porous glasses, Phys. Rev. B 48, 9021–9027 (1993)

    Article  Google Scholar 

  130. Y.Y. Wu, P.D. Yang: Melting and welding semiconductor nanowires in nanotubes, Adv. Mater. 13, 520–523 (2001)

    Article  Google Scholar 

  131. P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993)

    Article  Google Scholar 

  132. Y. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)

    Article  Google Scholar 

  133. J.L. Costa-Krämer, N. Garcia, H. Olin: Conductance quantization histograms of gold nanowires at 4 K, Phys. Rev. B 55, 12910–12913 (1997)

    Article  Google Scholar 

  134. M.E.T. Morales, A.G. Balogh, T.W. Cornelius, R. Neumann, C. Trautmann: Fragmentation of nanowires driven by Rayleigh instability, Appl. Phys. Lett. 84, 5337–5339 (2004)

    Google Scholar 

  135. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones: One-dimensional transport and the quantization of the ballistic resistance, J. Phys. C 21, L209–L214 (1988)

    Google Scholar 

  136. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouvenhoven, D. van der Marel, C.T. Foxon: Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60, 848–850 (1988)

    Article  Google Scholar 

  137. C.J. Muller, J.M. van Ruitenbeek, L.J. deJongh: Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width, Phys. Rev. Lett. 69, 140–143 (1992)

    Article  Google Scholar 

  138. C.J. Muller, J.M. Krans, T.N. Todorov, M.A. Reed: Quantization effects in the conductance of metallic contacts at room temperature, Phys. Rev. B 53, 1022–1025 (1996)

    Article  Google Scholar 

  139. J.L. Costa-Krämer, N. Garcia, H. Olin: Conductance quantization in bismuth nanowires at 4 K, Phys. Rev. Lett. 78, 4990–4993 (1997)

    Article  Google Scholar 

  140. C.Z. Li, H.X. He, A. Bogozi, J.S. Bunch, N.J. Tao: Molecular detection based on conductance quantization of nanowires, Appl. Phys. Lett. 76, 1333–1335 (2000)

    Article  Google Scholar 

  141. J.L. Costa-Krämer, N. Garcia, P. Garcia-Mochales, P.A. Serena, M.I. Marques, A. Correia: Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes, Phys. Rev. B 55, 5416–5424 (1997)

    Article  Google Scholar 

  142. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber: Logic gates and computation from assembled nanowire building blocks, Science 294, 1313–1317 (2001)

    Article  Google Scholar 

  143. J.-R. Kim, H. Oh, H.M. So, J.-J. Kim, J. Kim, C.J. Lee, S.C. Lyu: Schottky diodes based on a single GaN nanowire, Nanotechnology 13, 701–704 (2002)

    Article  Google Scholar 

  144. X. Duan, Y. Huang, C.M. Lieber: Nonvolatile memory and programmable logic from molecule-gated nanowires, Nano Lett. 2, 487–490 (2002)

    Article  Google Scholar 

  145. E.C. Walter, R.M. Penner, H. Liu, K.H. Ng, M.P. Zach, F. Favier: Sensors from electrodeposited metal nanowires, Surf. Interface Anal. 34, 409–412 (2002)

    Article  Google Scholar 

  146. E.C. Walter, K.H. Ng, M.P. Zach, R.M. Penner, F. Favier: Electronic devices from electrodeposited metal nanowires, Microelectron. Eng. 61/62, 555–561 (2002)

    Article  Google Scholar 

  147. Y.-M. Lin, X. Sun, M.S. Dresselhaus: Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires, Phys. Rev. B 62, 4610–4623 (2000)

    Article  Google Scholar 

  148. K. Liu, C.L. Chien, P.C. Searson: Finite-size effects in bismuth nanowires, Phys. Rev. B 58, R14681–R14684 (1998)

    Article  Google Scholar 

  149. Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, J. Heremans: Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays, Appl. Phys. Lett. 73, 1589–1591 (1998)

    Article  Google Scholar 

  150. J. Heremans, C.M. Thrush, Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, D.T. Morelli: Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization, Phys. Rev. B 58, R10091–R10095 (1998)

    Article  Google Scholar 

  151. L. Sun, P.C. Searson, C.L. Chien: Finite-size effects in nickel nanowire arrays, Phys. Rev. B 61, R6463–R6466 (2000)

    Article  Google Scholar 

  152. Y.-M. Lin, S.B. Cronin, O. Rabin, J.Y. Ying, M.S. Dresselhaus: Transport properties and observation of semimetal-semiconductor transition in Bi-based nanowires. In: Quantum Confined Semiconductor Nanostructures: MRS Symposium Proceedings, Boston, Vol. 737-C, ed. by J.M. Buriak, D.D.M. Wayner, F. Priolo, B. White, V. Klimov, L. Tsybeskov (Materials Research Society Press, Pittsburgh 2003) p. F3.14

    Google Scholar 

  153. Y.-M. Lin, M.S. Dresselhaus: Transport properties of superlattice nanowires and their potential for thermoelectric applications. In: Quantum Confined Semiconductor Nanostructures: MRS Symposium Proceedings, Boston, Vol. 737-C, ed. by J.M. Buriak, D.D.M. Wayner, F. Priolo, B. White, V. Klimov, L. Tsybeskov (Materials Research Society Press, Pittsburgh 2003) p. F8.18

    Google Scholar 

  154. Y.-M. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus: Semimetal-semiconductor transition in Bi1-xSbx alloy nanowires and their thermoelectric properties, Appl. Phys. Lett. 81, 2403–2405 (2002)

    Article  Google Scholar 

  155. J. Heremans, C.M. Thrush, Y.-M. Lin, S.B. Cronin, M.S. Dresselhaus: Transport properties of antimony nanowires, Phys. Rev. B 63, 085406–1–085406–8 (2001)

    Article  Google Scholar 

  156. Y.-M. Lin, S.B. Cronin, O. Rabin, J.Y. Ying, M.S. Dresselhaus: Transport properties of Bi1-xSbx alloy nanowires synthesized by pressure injection, Appl. Phys. Lett. 79, 677–679 (2001)

    Article  Google Scholar 

  157. Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, J. Heremans: Electronic transport properties of single crystal bismuth nanowire arrays, Phys. Rev. B 61, 4850–4861 (2000)

    Article  Google Scholar 

  158. D.E. Beutler, N. Giordano: Localization and electron-electron interaction effects in thin Bi wires and films, Phys. Rev. B 38, 8–19 (1988)

    Article  Google Scholar 

  159. J. Heremans, C.M. Thrush: Thermoelectric power of bismuth nanowires, Phys. Rev. B 59, 12579–12583 (1999)

    Article  Google Scholar 

  160. L.D. Hicks, M.S. Dresselhaus: Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631–16634 (1993)

    Article  Google Scholar 

  161. Y.-M. Lin, S.B. Cronin, O. Rabin, J. Heremans, M.S. Dresselhaus, J.Y. Ying: Transport properties of Bi-related nanowire systems. In: Anisotropic Nanoparticles: Synthesis, Characterization and Applications: MRS Symposium Proceedings, Boston, Vol. 635, ed. by S. Stranick, P.C. Searson, L.A. Lyon, C. Keating (Materials Research Society Press, Pittsburgh 2001) pp. C4301–C4306

    Google Scholar 

  162. Y.-M. Lin, M.S. Dresselhaus: Thermoelectric properties of superlattice nanowires, Phys. Rev. B 68, 075304 (2003)

    Article  Google Scholar 

  163. M.T. Björk, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, L. Samuelson: Nanowire resonant tunneling diodes, Appl. Phys. Lett. 81, 4458–4460 (2002)

    Article  Google Scholar 

  164. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar: Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett. 83, 2934–2936 (2003)

    Article  Google Scholar 

  165. T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997)

    Article  Google Scholar 

  166. S.T. Huxtable, A.R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, E.T. Croke: Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices, Appl. Phys. Lett. 80, 1737–1739 (2002)

    Article  Google Scholar 

  167. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. OʼQuinn: Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413, 597–602 (2001)

    Article  Google Scholar 

  168. C. Dames, G. Chen: Modeling the thermal conductivity of a SiGe segmented nanowire, 21st Int. Conf. Thermoelectr. Proc. ICT ʼ02, Long Beach (IEEE, Piscataway 2002) pp. 317–320

    Google Scholar 

  169. K. Schwab, J.L. Arlett, J.M. Worlock, M.L. Roukes: Thermal conductance through discrete quantum channels, Physica E 9, 60–68 (2001)

    Article  Google Scholar 

  170. D. Li, Y. Wu, R. Fan, P. Yang, A. Majumdar: Thermal conductivity of Si/SiGe superlattice nanowires, Appl. Phys. Lett. 83, 3186–3188 (2003)

    Article  Google Scholar 

  171. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat: Recent developments in thermoelectric materials, Int. Mater. Rev. 48, 45–66 (2003)

    Article  Google Scholar 

  172. C. Dames, G. Chen: Theoretical phonon thermal conductivity of Si-Ge superlattice nanowires, J. Appl. Phys. 95, 682–693 (2004)

    Article  Google Scholar 

  173. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes: Measurement of the quantum of thermal conductance, Nature 404, 974–977 (2000)

    Article  Google Scholar 

  174. M. Cardona: Light Scattering in Solids (Springer, Berlin Heidelberg 1982)

    Google Scholar 

  175. P.Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer, Berlin Heidelberg 1995), Chap. 7

    Google Scholar 

  176. J.C.M. Garnett: Colours in metal glasses, in metallic films, and in metallic solutions, Philos. Trans. R. Soc. Lond. A 205, 237–288 (1906)

    Article  Google Scholar 

  177. D.E. Aspnes: Optical properties of thin films, Thin Solid Films 89, 249–262 (1982)

    Article  Google Scholar 

  178. U. Kreibig, L. Genzel: Optical absorption of small metallic particles, Surf. Sci. 156, 678–700 (1985)

    Article  Google Scholar 

  179. M.R. Black, Y.-M. Lin, S.B. Cronin, O. Rabin, M.S. Dresselhaus: Infrared absorption in bismuth nanowires resulting from quantum confinement, Phys. Rev. B 65, 195417–1–195417–9 (2002)

    Article  Google Scholar 

  180. M.W. Lee, H.Z. Twu, C.-C. Chen, C.H. Chen: Optical characterization of wurtzite gallium nitride nanowires, Appl. Phys. Lett. 79, 3693–3695 (2001)

    Article  Google Scholar 

  181. D.M. Lyons, K.M. Ryan, M.A. Morris, J.D. Holmes: Tailoring the optical properties of silicon nanowire arrays through strain, Nano Lett. 2, 811–816 (2002)

    Article  Google Scholar 

  182. M.S. Gudiksen, J. Wang, C.M. Lieber: Size-depent photoluminescence from single indium phosphide nanowires, J. Phys. Chem. B 106, 4036–4039 (2002)

    Article  Google Scholar 

  183. J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang: Single nanowire lasers, J. Phys. Chem. B 105, 11387–11390 (2001)

    Article  Google Scholar 

  184. S. Blom, L.Y. Gorelik, M. Jonson, R.I. Shekhter, A.G. Scherbakov, E.N. Bogachek, U. Landman: Magneto-optics of electronic transport in nanowires, Phys. Rev. B 58, 16305–16314 (1998)

    Article  Google Scholar 

  185. J.P. Pierce, E.W. Plummer, J. Shen: Ferromagnetism in cobalt-iron alloy nanowire arrays on w(110), Appl. Phys. Lett. 81, 1890–1892 (2002)

    Article  Google Scholar 

  186. S. Melle, J.L. Menendez, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R.B. Wehrsphon, U. Gösele: Magneto-optical properties of nickel nanowire arrays, Appl. Phys. Lett. 83, 4547–4549 (2003)

    Article  Google Scholar 

  187. J.C. Johnson, H. Yan, R.D. Schaller, P.B. Petersen, P. Yang, R.J. Saykally: Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires, Nano Lett. 2, 279–283 (2002)

    Article  Google Scholar 

  188. M.R. Black, Y.-M. Lin, S.B. Cronin, M.S. Dresselhaus: Using optical measurements to improve electronic models of bismuth nanowires, 21st Int. Conf. Thermoelectr. Proc. ICT ʼ02, Long Beach, ed. by T. Caillat, J. Snyder (IEEE, Piscataway 2002) pp. 253–256

    Google Scholar 

  189. M.R. Black, P.L. Hagelstein, S.B. Cronin, Y.-M. Lin, M.S. Dresselhaus: Optical absorption from an indirect transition in bismuth nanowires, Phys. Rev. B 68, 235417 (2003)

    Article  Google Scholar 

  190. H.-L. Liu, C.-C. Chen, C.-T. Chia, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, S. Keller, S.P. DenBaars: Infrared and Raman-scattering studies in single-crystalline GaN nanowires, Chem. Phys. Lett. 345, 245–251 (2001)

    Article  Google Scholar 

  191. H. Richter, Z.P. Wang, L. Ley: The one phonon Raman-spectrum in microcrystalline silicon, Solid State Commun. 39, 625–629 (1981)

    Article  Google Scholar 

  192. I.H. Campbell, P.M. Fauchet: The effects of microcrystal size and shape on the one phonon Raman-spectra of crystalline semiconductors, Solid State Commun. 58, 739–741 (1986)

    Article  Google Scholar 

  193. R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, P.C. Eklund: Laser-induced Fano resonance scattering in silicon nanowires, Nano Lett. 3, 627–631 (2003)

    Article  Google Scholar 

  194. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66–69 (2001)

    Article  Google Scholar 

  195. Y. Cui, C.M. Lieber: Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science 291, 851–853 (2001)

    Article  Google Scholar 

  196. Y. Cui, X. Duan, J. Hu, C.M. Lieber: Doping and electrical transport in silicon nanowires, J. Phys. Chem. B 104, 101–104 (2000)

    Google Scholar 

  197. G.F. Zheng, W. Lu, S. Jin, C.M. Lieber: Synthesis and fabrication of high-performance n-type silicon nanowire transistors, Adv. Mater. 16, 1890–1891 (2004)

    Article  Google Scholar 

  198. J. Goldberger, D.J. Sirbuly, M. Law, P. Yang: ZnO nanowire transistors, J. Phys. Chem. B 109, 9–14 (2005)

    Article  Google Scholar 

  199. D.H. Kang, J.H. Ko, E. Bae, J. Hyun, W.J. Park, B.K. Kim, J.J. Kim, C.J. Lee: Ambient air effects on electrical characteristics of gap nanowire transistors, J. Appl. Phys. 96, 7574–7577 (2004)

    Article  Google Scholar 

  200. S.-W. Chung, J.-Y. Yu, J.R. Heath: Silicon nanowire devices, Appl. Phys. Lett. 76, 2068–2070 (2000)

    Article  Google Scholar 

  201. C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, J. Han, C. Zhou: Multilevel memory based on molecular devices, Appl. Phys. Lett. 84, 1949–1951 (2004)

    Article  Google Scholar 

  202. B. Lei, C. Li, D.Q. Zhang, Q.F. Zhou, K. Shung, C.W. Zhou: Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects, Appl. Phys. Lett. 84, 4553–4555 (2004)

    Article  Google Scholar 

  203. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan: Single crystal nanowire vertical surround-gate field-effect transistor, Nano Lett. 4, 1247–1252 (2004)

    Article  Google Scholar 

  204. M. Ding, H. Kim, A.I. Akinwande: Observation of valence band electron emission from n-type silicon field emitter arrays, Appl. Phys. Lett. 75, 823–825 (1999)

    Article  Google Scholar 

  205. F.C.K. Au, K.W. Wong, Y.H. Tang, Y.F. Zhang, I. Bello, S.T. Lee: Electron field emission from silicon nanowires, Appl. Phys. Lett. 75, 1700–1702 (1999)

    Article  Google Scholar 

  206. P.M. Ajayan, O.Z. Zhou: Applications of carbon nanotubes. In: Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer Ser. Top. Appl. Phys., Vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin Heidelberg 2001) pp. 391–425

    Chapter  Google Scholar 

  207. M. Lu, M.K. Li, Z.J. Zhang, H.L. Li: Synthesis of carbon nanotubes/si nanowires core-sheath structure arrays and their field emission properties, Appl. Surf. Sci. 218, 196–202 (2003)

    Article  Google Scholar 

  208. L. Vila, P. Vincent, L. Dauginet-DePra, G. Pirio, E. Minoux, L. Gangloff, S. Demoustier-Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux, P. Legagneux: Growth and field-emission properties of vertically aligned cobalt nanowire arrays, Nano Lett. 4, 521–524 (2004)

    Article  Google Scholar 

  209. G. Dresselhaus, M.S. Dresselhaus, Z. Zhang, X. Sun, J. Ying, G. Chen: Modeling thermoelectric behavior in Bi nano-wires, 17th Int. Conf. Thermoelectr. Proc. ICTʼ98, Nagoya, ed. by K. Koumoto (IEEE, Piscataway 1998) pp. 43–46

    Google Scholar 

  210. L.D. Hicks, M.S. Dresselhaus: The effect of quantum well structures on the thermoelectric figure of merit, Phys. Rev. B 47, 12727–12731 (1993)

    Article  Google Scholar 

  211. O. Rabin, Y.-M. Lin, M.S. Dresselhaus: Anomalously high thermoelectric figure of merit in Bi1-xSbx nanowires by carrier pocket alignment, Appl. Phys. Lett. 79, 81–83 (2001)

    Article  Google Scholar 

  212. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge: Quantum dot superlattice thermoelectric materials and devices, Science 297, 2229–2232 (2002)

    Article  Google Scholar 

  213. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber: Single-nanowire electrically driven lasers, Nature 421, 241 (2003)

    Article  Google Scholar 

  214. F. Qian, Y. Li, S. Gradecak, D.L. Wang, C.J. Barrelet, C.M. Lieber: Gallium nitride-based nanowire radial heterostructures for nanophotonics, Nano Lett. 4, 1975–1979 (2004)

    Article  Google Scholar 

  215. V. Dneprovskii, E. Zhukov, V. Karavanskii, V. Poborchii, I. Salamatini: Nonlinear optical properties of semiconductor quantum wires, Superlattice. Microst. 23(6), 1217–1221 (1998)

    Article  Google Scholar 

  216. J.C. Johnson, K.P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, R.J. Saykally: Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers, Nano Lett. 4, 197–204 (2004)

    Article  Google Scholar 

  217. J.X. Ding, J.A. Zapien, W.W. Chen, Y. Lifshitz, S.T. Lee, X.M. Meng: Lasing in ZnS nanowires grown on anodic aluminum oxide templates, Appl. Phys. Lett. 85, 2361 (2004)

    Article  Google Scholar 

  218. J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally: Single gallium nitride nanowire lasers, Nat. Mater. 1, 106–110 (2002)

    Article  Google Scholar 

  219. H.J. Choi, J.C. Johnson, R. He, S.K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R.J. Saykally, P. Yang: Self-organized GaN quantum wire UV lasers, J. Phys. Chem. B 107, 8721–8725 (2003)

    Article  Google Scholar 

  220. C.J. Barrelet, A.B. Greytak, C.M. Lieber: Nanowire photonic circuit elements, Nano Lett. 4, 1981–1985 (2004)

    Article  Google Scholar 

  221. M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang: Ultralong nanoribbon waveguides for sub-wavelength photonics integration, Science 305, 1269–1273 (2004)

    Article  Google Scholar 

  222. H. Kind, H. Yan, B. Messer, M. Law, P. Yang: Nanowire ultraviolet photodetectors and optical switches, Adv. Mater. 14, 158–160 (2002)

    Article  Google Scholar 

  223. B.M.I. van der Zande, M.R. Böhmer, L.G.J. Fokkink, C. Schöneberger: Colloidal dispersions of gold rods: synthesis and optical properties, Langmuir 16, 451–458 (2000)

    Article  Google Scholar 

  224. B.M.I. van der Zande, G.J.M. Koper, H.N.W. Lekkerkerker: Alignment of rod-shaped gold particles by electric fields, J. Phys. Chem. B 103, 5754–5760 (1999)

    Article  Google Scholar 

  225. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos: Hybrid nanorod-polymer solar cells, Science 295, 2425–2427 (2002)

    Article  Google Scholar 

  226. L.A. Bauer, N.S. Birenbaum, G.J. Meyer: Biological applications of high aspect ratio nanoparticles, J. Mater. Chem. 14, 517–526 (2004)

    Article  Google Scholar 

  227. Y. Cui, Q. Wei, H. Park, C. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292 (2001)

    Article  Google Scholar 

  228. J. Hahm, C. Lieber: Direct ultra-sensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett. 4, 51–54 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mildred S. Dresselhaus , Yu-Ming Lin , Oded Rabin , Marcie R. Black , Jing Kong or Gene Dresselhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Dresselhaus, M.S., Lin, YM., Rabin, O., Black, M.R., Kong, J., Dresselhaus, G. (2010). Nanowires. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics