Skip to main content

Micro-/Nanodroplets in Microfluidic Devices

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Fluid is often transported in the form of droplets in nature. From the formation of clouds to the condensation of dew on leaves, droplets are formed spontaneously in the air, on solids, and in immiscible fluids. In biological systems, droplets with lipid bilayer membranes are used to transport subnanoliter amounts of reagents between organelles, between cells, and between organs, in processes that control our day-to-day metabolic activities. The precision of such systems is self-evident and proves that droplet-based systems provide intrinsically efficient ways to perform controlled transport, reactions, and signaling.

This precision and efficiency can be utilized in many lab-on-chip applications by manipulating individual droplets using microfabricated force gradients. Complex segmented flow processes involving generating, fusing, splitting, and sorting droplets have been developed to digitally control fluid volumes and concentrations to nanoliter levels. In this chapter, microfluidic techniques for manipulating droplets are reviewed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

BST:

barium strontium titanate

CEW:

continuous electrowetting

DEP:

dielectrophoresis

DNA:

deoxyribonucleic acid

EW:

electrowetting

EWOD:

electrowetting on dielectric

GFP:

green fluorescent protein

MC:

microcantilever

MC:

microcapillary

PCR:

polymerase chain reaction

References

  1. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee: Droplet microfluidics, Lab Chip 8(2), 198–220 (2008)

    Article  Google Scholar 

  2. M.G. Pollack, A.D. Shenderov, R.B. Fair: Electrowetting-based actuation of droplets for integrated microfluidics, Lab Chip 2, 96–101 (2002)

    Article  Google Scholar 

  3. R.H. Farahi, A. Passian, T.L. Ferrell, T. Thundat: Microfluidic manipulation via Marangoni forces, Appl. Phys. Lett. 85(18), 4237–4239 (2004)

    Article  Google Scholar 

  4. B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott: Electrochemical principles for active control of liquids on submillimeter scales, Science 283, 57–60 (1999)

    Article  Google Scholar 

  5. K. Hosokawa, T. Fujii, I. Endo: Handling of picoliter liquid samples in a poly(dimethysiloxane)-based microfluidic device, Anal. Chem. 71, 4781–4785 (1999)

    Article  Google Scholar 

  6. C. Quillet, B. Berge: Electrowetting: A recent outbreak, Curr. Opin. Colloid Sci. 6, 34–39 (2001)

    Article  Google Scholar 

  7. H. Moon, S.K. Cho, R.L. Garrell, C. Kim: Low voltage electrowetting-on-dielectric, J. Appl. Phys. 92(7), 4080–4087 (2002)

    Article  Google Scholar 

  8. J. Ding, K. Chakrabarty, R.B. Fair: Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20(12), 1463–1468 (2001)

    Article  Google Scholar 

  9. J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, J.A. Rogers: Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels, IEEE Photon. Technol. Lett. 15(1), 81–83 (2003)

    Article  Google Scholar 

  10. J. Lee, C. Kim: Surface-tension-driven microactuation based on continuous electrowetting, J. Microelectromech. Syst. 9(2), 171–180 (2000)

    Article  MATH  Google Scholar 

  11. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. Kim: Electrowetting and electrowetting-on-dielectric for microscale liquid handling, Sens. Actuators A 95, 259–268 (2002)

    Article  Google Scholar 

  12. J. Yoon, R.L. Garrell: Preventing biomolecular adsorption in electrowetting-based biofluidic chips, Anal. Chem. 75(19), 5097–5102 (2003)

    Article  Google Scholar 

  13. M.G. Pollack, R.B. Fair: Electrowetting-based actuation of liquid droplets for microfluidic applications, Appl. Phys. Lett. 77(11), 1725–1726 (2000)

    Article  Google Scholar 

  14. P. Paik, V.K. Pamula, M.G. Pollack, R.B. Fair: Electrowetting-based droplet mixers for microfluidic systems, Lab Chip 3, 28–33 (2003)

    Article  Google Scholar 

  15. P.Y. Chiou, H. Moon, H. Toshiyoshi, C. Kim, M.C. Wu: Light actuation of liquid by optoelectrowetting, Sens. Actuators A 104, 222–228 (2003)

    Article  Google Scholar 

  16. R.A. Hayes, B.J. Freenstra: Video-speed electronic paper based on electrowetting, Nature 425, 383–385 (2003)

    Article  Google Scholar 

  17. S.K. Cho, H. Moon, J. Fowler, C. Kim: Splitting a liquid droplet for electrowetting-based microfluidics, ASME Int. Mech. Eng. Congr. Expo. (ASME International, New York 2001)

    Google Scholar 

  18. S.K. Cho, H. Moon, C. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromech. Syst. 12(1), 70–80 (2003)

    Article  Google Scholar 

  19. T.B. Jones, J.D. Fowler, Y.S. Chang, C. Kim: Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation, Langmuir 19, 7646–7651 (2003)

    Article  Google Scholar 

  20. A.A. Darhuber, J.M. Davis, S.M. Troian, W.W. Reisner: Thermocapillary actuation of liquid flow on chemically patterned surfaces, Phys. Fluids 15(5), 1295–1304 (2003)

    Article  Google Scholar 

  21. A.A. Darhuber, J.P. Valentino, S.M. Troian, S. Wagner: Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays, J. Microelectromech. Syst. 12(6), 873–879 (2003)

    Article  Google Scholar 

  22. A.A. Darhuber, J.P. Valentino, J.M. Davis, S.M. Troian: Microfluidic actuation by modulation of surface stresses, Appl. Phys. Lett. 82(4), 657–659 (2003)

    Article  Google Scholar 

  23. A.A. Darhuber, J.Z. Chen, J.M. Davis, S.M. Troian: A study of mixing in thermocapillary flows on micropatterned surfaces, Philos. Trans. R. Soc. Lond. Ser. A 362, 1037–1058 (2003)

    Article  Google Scholar 

  24. A.A. Darhuber, S.M. Trojan: Dynamics of capillary spreading along hydrophilic microstripes, Phys. Rev. E. 64, 031603 (2001)

    Article  Google Scholar 

  25. M.G. Lippmann: Relations entre les phénomènes électriques et capillaires, Anal. Chim. Phys. 5(11), 494–549 (1875), in French

    Google Scholar 

  26. J. Zeng, T. Korsmeyer: Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab Chip 4(4), 265–277 (2004)

    Article  Google Scholar 

  27. P. Paik, V.K. Pamula, R.B. Fair: Rapid droplet mixers for digital microfluidic systems, Lab Chip 3, 253–259 (2003)

    Article  Google Scholar 

  28. P.R.C. Gascoyne, J.V. Vykoukal, J.A. Schwartz, T.J. Anderson, D.M. Vykoukal, K.W. Current, C. Mc-Conaghy, F.F. Becker, C. Andrews: Dielectrophoresis-based programmable fluidic processors, Lab Chip 4(4), 299–309 (2004)

    Article  Google Scholar 

  29. T. Nisisako, T. Tori, T. Higuchi: Droplet formation in a microchannel network, Lab Chip 2, 24–26 (2002)

    Article  Google Scholar 

  30. Y.C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee: Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab Chip 4(4), 292–298 (2004)

    Article  Google Scholar 

  31. S.L. Anna, N. Bontoux, H.A. Stone: Formation of dispersions using flow focusing in microchannels, Appl. Phys. Lett. 82(3), 364–366 (2003)

    Article  Google Scholar 

  32. Y.C. Tan, V. Cristini, A.P. Lee: Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sens. Actuators B 114, 350–356 (2006)

    Article  Google Scholar 

  33. T. Kawakatsu, G. Trägårdh, C. Trägårdh, M. Nakajima, N. Oda, T. Yonemoto: The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification, Colloids Surf. 179, 29–37 (2001)

    Article  Google Scholar 

  34. B.J. Briscoe, C.J. Lawrence, W.G.P. Mietus: A review of immiscible fluidmixing, Adv. Colloid Interface Sci. 81(1), 1–17 (1999)

    Article  Google Scholar 

  35. T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(18), 4163–4166 (2001)

    Article  Google Scholar 

  36. V. Cristini, Y.C. Tan: Theory and numerical simulation of droplet dynamics in complex flows – A review, Lab Chip 4(4), 257–264 (2004)

    Article  Google Scholar 

  37. J.D. Tice, H. Song, A.D. Lyon, R.F. Ismagilov: Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir 19(22), 9127–9133 (2003)

    Article  Google Scholar 

  38. J.D. Tice, A.D. Lyon, R.F. Ismagilov: Effects of viscosity on droplet formation and mixing in microfluidic channels, Anal. Chim. Acta 507, 73–77 (2003)

    Article  Google Scholar 

  39. R. Dreyfus, P. Tabeling, H. Willaime: Ordered and disordered patterns in two-phase flows in microchannels, Phys. Rev. Lett. 90(14), 144505 (2003)

    Article  Google Scholar 

  40. B. Zheng, J.D. Tice, R.F. Ismagilov: Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentration in droplet-based assays, Anal. Chem. 76(17), 4977–4982 (2004)

    Article  Google Scholar 

  41. Q. Xu, M. Nakajima: The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device, Appl. Phys. Lett. 85(17), 3726–3728 (2004)

    Article  Google Scholar 

  42. I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, H. Fujita: Silicon array of elongated through-holes for monodisperse emulsion droplets, AIChE Journal 48(8), 1639–1644 (2002)

    Article  Google Scholar 

  43. S. Sugiura, M. Nakajima, M. Seki: Prediction of droplet diameter for microchannel emulsification, Langmuir 18, 3854–3859 (2002)

    Article  Google Scholar 

  44. T. Kawakatsu, H. Komori, M. Nakajima, Y. Kikuchi, T. Yonemoto: Production of monodispersed oil-in- water emulsion using crossflow-type silicon microchannel plate, J. Chem. Eng. Jpn. 32(2), 241–244 (1999)

    Article  Google Scholar 

  45. T. Kawakatsu, G. Trägårdh, C. Trägårdh: Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification, Colloids Surf. 189, 257–264 (2001)

    Article  Google Scholar 

  46. S. Okushima, T. Nisisako, T. Torii, T. Higuchi: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir 20, 9905–9908 (2004)

    Article  Google Scholar 

  47. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz: Monodisperse double emulsions generated from a microcapillary device, Science 308, 537–541 (2005)

    Article  Google Scholar 

  48. K. Handique, M.A. Burns: Mathematical modeling of drop mixing in a slit-type microchannel, J. Micromech. Microeng. 11(5), 548–554 (2001)

    Article  Google Scholar 

  49. T. Nisisako, T. Torii, T. Higuchi: Novel microreactors for functional polymer beads, Chem. Eng. J. 101, 23–29 (2004)

    Article  Google Scholar 

  50. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov: Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett. 83(22), 4664–4666 (2003)

    Article  Google Scholar 

  51. H. Song, J.D. Tice, R.F. Ismagilov: A microfluidic system for controlling reaction networks in time, Angew. Chem. Int. Ed. 42(7), 768–772 (2003)

    Article  Google Scholar 

  52. J.M. Kohler, T. Henkel, A. Grodrian, T. Kimer, M. Roth, K. Martin, J. Metze: Digital reaction technology by micro segmented flow – Components, concepts and applications, Chem. Eng. J. 101(1–3), 201–216 (2004)

    Article  Google Scholar 

  53. L.H. Hung, K.M. Choi, W.Y. Tseng, Y.C. Tan, K.J. Shea, A.P. Lee: Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticles synthesis, Lab Chip 6, 1–6 (2006)

    Article  Google Scholar 

  54. D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone: Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92(5), 054503 (2004)

    Article  Google Scholar 

  55. Y.C. Tan, Y.L. Ho, A.P. Lee: Microfluidic sorting of droplets by size, Microfluid. Nanofluid. 4, 343–348 (2008)

    Article  Google Scholar 

  56. G. Yi, S. Jeon, T. Thorsen, V.N. Manoharan, S.R. Quake, D.J. Pine, S. Yang: Generation of uniform photonic balls by template-assisted colloidal crystallization, Synth. Met. 139, 803–806 (2003)

    Article  Google Scholar 

  57. S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima: Size control of calcium alginate beads containing living cells using micro-nozzle array, Biomaterials 26, 3327–3331 (2005)

    Article  Google Scholar 

  58. L.-H. Hung, A.P. Lee: Microfluidic devices for the synthesis of nanoparticles and biomaterials, J. Med. Biol. Eng. 27(1), 1–6 (2007)

    Google Scholar 

  59. E. Lorenceau, A.S. Utada, D.R. Link, G. Cristobal, M. Joanicot, D.A. Weitz: Generation of polymersomes from double emulsions, Langmuir 21(20), 9183–9186 (2005)

    Article  Google Scholar 

  60. R.C. Hayward, A.S. Utada, N. Dan, D.A. Weitz: Dewetting instability during the formation of polymersomes from block-copolymer-stabilized double emulsions, Langmuir 22(10), 4457–4461 (2006)

    Article  Google Scholar 

  61. G. Yi, T. Thorsen, V.N. Manoharan, M. Hwang, S. Jeon, D.J. Pine, S.R. Quake, S. Yang: Generation of uniform colloidal assemblies in soft microfluidic devices, Adv. Mater. 15(15), 1300–1304 (2003)

    Article  Google Scholar 

  62. G. Yi, V.N. Manoharan, S. Klein, K.R. Brzezinska, D.J. Pine, F.F. Lange, S. Yang: Monodisperse micrometer-scale spherical assemblies of polymer particles, Adv. Mater. 14(16), 1137–1140 (2002)

    Article  Google Scholar 

  63. J.R. Millman, K.H. Bhatt, B.G. Prevo, O.D. Velev: Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors, Nature 4, 98–102 (2005)

    Article  Google Scholar 

  64. V. Srinivasan, V.K. Pamula, R.B. Fair: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab Chip 4(4), 310–315 (2004)

    Article  Google Scholar 

  65. B. Zheng, J.D. Tice, R.F. Ismagilov: Formation of arrayed droplets by soft lithography and two phase fluid flow, and application in protein crystallization, Adv. Mater. 16(15), 1365–1368 (2004)

    Article  Google Scholar 

  66. M. He, J.S. Edgar, G.D. Jeffries, R.M. Lorenz, J.P. Shelby, D.T. Chiu: Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Anal. Chem. 77, 1539–1544 (2005)

    Article  Google Scholar 

  67. S. Sugiura, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T. Nakamura, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima: Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules, Biomed. Microdevices 9, 91–99 (2007)

    Article  Google Scholar 

  68. H. Shintaku, T. Kuwabara, S. Kawano, T. Suzuki, I. Kanno, H. Kotera: Micro cell encapsulation and its hydrogel-beads production using microfluidic device, Microsyst. Technol. 13(8-10), 951–958 (2007)

    Article  Google Scholar 

  69. S. Sakai, I. Hashimoto, K. Kawakami: Agarose-gelatin conjugate for adherent cell-enclosing capsules, Biotechnol. Lett. 29(5), 731–735 (2007)

    Article  Google Scholar 

  70. C.H. Yang, K.S. Huang, J.Y. Chang: Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip, Biomed. Microdevices 9(2), 253–259 (2007)

    Article  Google Scholar 

  71. S. Abraham, E.H. Jeong, T. Arakawa, S. Shoji, K.C. Kim, I. Kim, J.S. Go: Microfluidics assisted synthesis of well-defined spherical polymeric microcapsules and their utilization as potential encapsulants, Lab Chip 6(6), 752–756 (2006)

    Article  Google Scholar 

  72. J.W. Kim, A.S. Utada, A. Fernandez-Nieves, Z.B. Hu, D.A. Weitz: Fabrication of monodisperse gel shells and functional microgels in microfluidic devices, Angew. Chem. Int. Ed. 46(11), 1819–1822 (2007)

    Article  Google Scholar 

  73. V. Srinivasan, V.K. Pamula, R.B. Fair: Droplet-based microfluidic lab-on-a-chip for glucose detection, Anal. Chim. Acta 507, 145–150 (2004)

    Article  Google Scholar 

  74. I. Shestopalov, J.D. Tice, R.F. Ismagilov: Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab Chip 4, 316–321 (2004)

    Article  Google Scholar 

  75. Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth: Planar chip device for PCR and hybridization with surface acoustic wave pump, Lab Chip 5, 308–317 (2004)

    Article  Google Scholar 

  76. M.A. Burns, C.H. Mastrangelo, T.S. Sammarco, F.P. Man, J.R. Webster, B.N. Johnson, B. Foerster, D. Jones, Y. Fields, A.R. Kaiser, D.T. Burke: Microfabricated structures for integrated DNA analysis, Proc. Natl. Acad. Sci. USA 93, 5556–5561 (1996)

    Article  Google Scholar 

  77. B. Zheng, L.S. Roach, R.F. Ismagilov: Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, J. Am. Chem. Soc. 125, 11170–11171 (2003)

    Article  Google Scholar 

  78. B. Zheng, J.D. Tice, L.S. Roach, R.F. Ismagilov: A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction, Angew. Chem. Int. Ed. 43, 2508–2511 (2004)

    Article  Google Scholar 

  79. P.S. Dittrich, M. Jahnz, P. Schwille: A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices, ChemBioChem. 6, 811–814 (2005)

    Article  Google Scholar 

  80. R.N. Beer, B.J. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, B.W. Colston: On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets, Anal. Chem. 79, 8471–8475 (2007)

    Article  Google Scholar 

  81. M. Srisa-Art, A.J. deMello, J.B. Edel: High-througput DNA droplet assays using picoliter reactor volumes, Anal. Chem. 79(17), 6682–6689 (2007)

    Article  Google Scholar 

  82. D. Dendukuri, K. Tsoi, T.A. Hatton, P.S. Doyle: Controlled synthesis of nonspherical microparticles using microfluidics, Langmuir 21, 2113–2116 (2005)

    Article  Google Scholar 

  83. A. Terray, J. Oakey, D.W.M. Marr: Microfluidic control using colloidal devices, Science 296(7), 1841–1844 (2005)

    Article  Google Scholar 

  84. B.R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C.C. Huang, J.A. Rogers: Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics, Appl. Phys. Lett. 83(24), 4912–4914 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Chieh Tan , Shia-Yen Teh or Abraham P. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Tan, YC., Teh, SY., Lee, A.P. (2010). Micro-/Nanodroplets in Microfluidic Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics