Skip to main content

Centrifuge-Based Fluidic Platforms

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 15k Accesses

Abstract

In this chapter centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation are introduced. Those fluidic functions have been combined with analytical measurements techniques such as optical imaging, absorbance and fluorescence spectroscopy and mass spectrometry to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high-throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include: two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare the technical barriers involved in applying microfluidics for sensing and diagnostic as opposed to applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, while we might have to wait longer to see commercial CD-based diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

BSA:

bovine serum albumin

CD:

compact disc

CD:

critical dimension

DC:

direct-current

DMSO:

dimethyl sulfoxide

DNA:

deoxyribonucleic acid

DVD:

digital versatile disc

EHD:

elastohydrodynamic

GFP:

green fluorescent protein

HTS:

high throughput screening

MALDI:

matrix assisted laser desorption ionization

MEMS:

microelectromechanical system

PC:

polycarbonate

PDMS:

polydimethylsiloxane

PMMA:

poly(methyl methacrylate)

RNA:

ribonucleic acid

RPC:

reverse phase column

RPM:

revolutions per minute

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SNP:

single nucleotide polymorphisms

References

  1. Alpha-MOS: http://www.alpha-mos.com (Alpha-MOS, Hillsborough 2008) Example for commercial electronic noses and tongues

  2. A. Manz, E. Verpoorte, C.S. Effenhauser, N. Burggraf, D.E. Raymond, D.J. Harrison, H.M. Widmer: Miniaturization of separation techniques using planar chip technology, HRC J. High Resolut. Chromatogr. 16, 433–436 (1993)

    Article  Google Scholar 

  3. Caliper Life Science: http://www.caliperLS.com (Caliper Life Science, Hopkinton 2008)

  4. Tecan: Look for LabCD-ADMET System (Tecan, Boston 2008), http://www.tecan-us.com/us-index.htm

    Google Scholar 

  5. Abaxis: http://www.abaxis.com (Abaxis, Union City 2008)

  6. M.J. Madou: Fundamentals of Microfabrication, 2nd edn. (CRC, Boca Raton 2002)

    Google Scholar 

  7. S. Miyazaki, T. Kawai, M. Araragi: A piezo-electric pump driven by a flexural progressive wave, Proc. IEEE Micro Electro Mech. Syst. (MEMS ʼ91) (Nara 1991) pp. 283–288

    Google Scholar 

  8. J.W. Jorgenson, E.J. Guthrie: Liquid chromatography in open-tubular columns, J. Chromatogr. 255, 335–348 (1983)

    Article  Google Scholar 

  9. D.J. Harrison, Z. Fan, K. Fluri, K. Seiler: Integrated electrophoresis systems for biochemical analyses, Solid State Sens. Actuator Workshop, Tech. Dig. (Hilton Head Island 1994) pp. 21–24

    Google Scholar 

  10. D.C. Duffy, H.L. Gills, J. Lin, N.F. Sheppard, G.J. Kellogg: Microfabicated centrifugal microfluidic systems: Characterization and multiple enzymatic assays, Anal. Chem. 71(20), 4669–4678 (1999)

    Article  Google Scholar 

  11. M.J. Madou, G.J. Kellogg: A centrifuge-based microfluidic platform for diagnostics, LabCD 3259, 80–93 (1998)

    Google Scholar 

  12. G.T.A. Kovacs: Micromachined Transducers Sourcebook (Dordrecht/WCB/McGraw-Hill, Boston 1998) pp. 787–793

    Google Scholar 

  13. G. Ekstrand, C. Holmquist, A. Edman Örlefors, B. Hellman, A. Larsson, P. Anderson: Microfluidics in a rotating CD. In: Micro Total Analysis Systems 2000, ed. by A. van den Berg, W. Olthuis, P. Bergveld (Kluwer, Dordrecht 2000) pp. 311–314

    Google Scholar 

  14. A.-L. Tiensuu, O. Öhman, L. Lundbladh, O. Larsson: Hydrophobic valves by ink-jet printing on plastic CDs with integrated microfluidics. In: Micro Total Analysis Systems 2000, ed. by A. van den Berg, W. Olthuis, P. Bergveld (Kluwer, Dordrecht 2000) pp. 575–578

    Google Scholar 

  15. M.J. Madou, Y. Lu, S. Lai, J. Lee, S. Daunert: A centrifugal microfluidic platform – A comparison. In: Micro Total Analysis Systems 2000, ed. by A. van den Berg, W. Olthuis, P. Bergveld (Kluwer, Dordrecht 2000) pp. 565–570

    Google Scholar 

  16. J. Zeng, D. Banerjee, M. Deshpande, J.R. Gilbert, D.C. Duffy, G.J. Kellogg: Design analysis of capillary burst valves in centrifugal microfluidics. In: Micro Total Analysis Systems 2000, ed. by A. van den Berg, W. Olthuis, P. Bergveld (Kluwer, Dordrecht 2000) pp. 579–582

    Google Scholar 

  17. I.H.A. Badr, R.D. Johnson, M.J. Madou, L.G. Bachas: Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform, Anal. Chem. 74(21), 5569–5575 (2002)

    Article  Google Scholar 

  18. R.D. Johnson, I.H.A. Badr, G. Barrett, S. Lai, Y. Lu, M.J. Madou, L.G. Bachas: Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics, Anal. Chem. 73(16), 3940–3946 (2001)

    Article  Google Scholar 

  19. M. McNeely, M. Spute, N. Tusneem, A. Oliphant: Hydrophobic microfluidics, Proc. Microfluid. Dev. Syst. 3877, 210–220 (1999)

    Article  Google Scholar 

  20. Gyros AB: Gyrolab MALDA SP1 (Gyros AB, Uppsala 2008), Application Report 101

    Google Scholar 

  21. S. Lai, S. Wang, J. Luo, J. Lee, S. Yang, M.J. Madou: Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay, Anal. Chem. 76(7), 1832–1837 (2004)

    Article  Google Scholar 

  22. G.J. Kellogg, T.E. Arnold, B.L. Carvalho, D.C. Duffy, N.F. Sheppard: Centrifugal microfluidics: Applications. In: Micro Total Analysis Systems 2000, ed. by A. van den Berg, W. Olthuis, P. Bergveld (Kluwer, Dordrecht 2000) pp. 239–242

    Google Scholar 

  23. N. Thomas, A. Ocklind, I. Blikstad, S. Griffiths, M. Kenrick, H. Derand, G. Ekstrand, C. Ellström, A. Larsson, P. Anderson: Integrated cell based assays in microfabricated disposable CD devices. In: Micro Total Analysis Systems 2000, ed. by A. van den Berg, W. Olthuis, P. Bergveld (Kluwer, Dordrecht 2000) pp. 249–252

    Google Scholar 

  24. A.W. Anderson: Physical Chemistry of Surfaces (Wiley, New York 1960) pp. 5–6

    Google Scholar 

  25. Private communication with G.J. Kellogg of Tecan, Boston (2008)

    Google Scholar 

  26. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem. 70, 4974–4984 (1998)

    Article  Google Scholar 

  27. J. Burbaum: Miniaturization technologies in HTS: How fast, how small, how soon?, Drug Discov. Today 3(7), 313–322 (1998)

    Article  Google Scholar 

  28. J.V. Zoval, R. Boulanger, C. Blackwell, B. Borchers, M. Flynn, D. Smernoff, R. Landheim, R. Mancinelli, M.J. Madou: Work done by this group, SETI Institute, Orbital Sciences, Dysyscon Inc., Stanford University and NASA Ames (2008)

    Google Scholar 

  29. R. Barathur, J. Bookout, S. Sreevatsan, J. Gordon, M. Werner, G. Thor, M. Worthington: New disc-based technologies for diagnostic and research applications, Psychiatr. Genet. 12(4), 193–206 (2002)

    Article  Google Scholar 

  30. I. Alexandre, Y. Houbion, J. Collet, S. Hamels, J. Demarteau, J.-L. Gala, J. Remacle: Compact disc with both numeric and genomic information as DNA microarray platform, BioTechniques 33(2), 435–439 (2002)

    Google Scholar 

  31. Y. Wang, B. Vaidya, H.D. Farquar, W. Stryjewski, R.P. Hammer, R.L. McCarley, S.A. Soper, Y.W. Cheng, F. Barany: Microarrays assembled in microfluidic chips fabricated from poly(methyl methacrylate) for the detection of low-abundant DNA mutations, Anal. Chem. 75, 1130–1140 (2003)

    Article  Google Scholar 

  32. V. Mikhailovich, S. Lapa, D. Gryadunov, A. Sobolev, B. Strizhkov, N. Chernyh, O. Skotnikova, O. Irtuganova, A. Moroz, V. Litvinov, M. Vladimirskii, M. Perelman, L. Chernousova, V. Erokhin, A. Zasedatelev, A. Mirzabekov: Identification of rifampin-resistant mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips, J. Clin. Microbiol. 39, 2531–2540 (2001)

    Article  Google Scholar 

  33. S. Bekal, R. Brousseau, L. Masson, G. Prefontaine, J. Fairbrother, J. Harel: Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays, J. Clin. Microbiol. 41, 2113–2125 (2003)

    Article  Google Scholar 

  34. S.G. Bavykin, J.P. Akowski, V.M. Zakhariev, V.E. Barsky, A.N. Perov, A.D. Mirzabekov: Portable system for microbial sample preparation and oligonucleotide microarray analysis, Appl. Environ. Microbiol. 67, 922–928 (2001)

    Article  Google Scholar 

  35. L. Westin, C. Miller, D. Vollmer, D. Canter, R. Radtkey, M. Nerenberg, J.P. OʼConnell: Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array, J. Clin. Microbiol. 39, 1097–1104 (2001)

    Article  Google Scholar 

  36. H.Z. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, R. Kumar: Dynamic DNA hybridization on a chip using paramagnetic beads, Anal. Chem. 71, 4851–4859 (1999)

    Article  Google Scholar 

  37. R. Peytavi, F. Raymond, D. Gagné, K. Boissinot, F. Picard, M. Boissinot, L. Bissonnette, M. Ouellette, M. Bergeron: Microfluidic device for rapid (15 min) automated microarray hybridization, Clin. Chem. 51, 10 (2005)

    Article  Google Scholar 

  38. V. Chan, D.J. Graves, S.E. McKenzie: The biophysics of DNA hybridization with immobilized oligonucleotide probes, Biophys. J. 69, 2243–2255 (1995)

    Article  Google Scholar 

  39. M.K. McQuain, K. Seale, J. Peek, T.S. Fisher, S. Levy, M.A. Stremler, F.R. Haselton: Chaotic mixer improves microarray hybridization, Anal. Biochem. 325, 215–226 (2004)

    Article  Google Scholar 

  40. E. Bringuier, A. Bourdon: Colloid transport in nonuniform temperature, Phys. Rev. E 67, 011404 (2003)

    Article  Google Scholar 

  41. D. Axelrod, M.D. Wang: Reduction-of-dimensionality kinetics at reaction-limited cell-surface receptors, Biophys. J. 66, 588–600 (1994)

    Article  Google Scholar 

  42. Y.C. Chung, W.N. Chang, Y.C. Lin, M.Z. Shiu: Microfluidic chip for fast nucleic acid hybridization, Lab Chip 3, 228–233 (2003)

    Article  Google Scholar 

  43. R.H. Liu, R. Lenigk, R.L. Druyor-Sanchez, J. Yang, P. Grodzinski: Hybridization enhancement using cavitation microstreaming, Anal. Chem. 75, 1911–1917 (2003)

    Article  Google Scholar 

  44. B.J. Cheek, A.B. Steel, M.P. Torres, Y.Y. Yu, H. Yang: Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip, Anal. Chem. 73, 5777–5783 (2001)

    Article  Google Scholar 

  45. R. Lenigk, R.H. Liu, M. Athavale, Z. Chen, D. Ganser, J. Yang, C. Rauch, Y. Liu, B. Chan, H. Yu, M. Ray, R. Marrero, P. Grodzinski: Plastic biochannel hybridization devices: A new concept for microfluidic DNA arrays, Anal. Biochem. 311, 40–49 (2002)

    Article  Google Scholar 

  46. D. Di Carlo, K.-H. Jeong, L.P. Lee: Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation, Lab Chip 3, 287–291 (2003)

    Article  Google Scholar 

  47. S.W. Lee, Y.-C. Tai: A micro cell lysis device, Sens. Actuators A 73, 74–79 (1999)

    Article  Google Scholar 

  48. J. Sambrook, D.W. Russell: Molecular Cloning (CSHL, Cold Spring Harbor 2001)

    Google Scholar 

  49. J. Kim, S.H. Jang, G. Jia, J.V. Zoval, N.A. Da Silva, M.J. Madou: Cell lysis on a microfluidic CD (compact disc), Lab Chip 4, 516–522 (2004)

    Article  Google Scholar 

  50. K.K.J. Ruschak, L.E. Scriven: Rimming flow of liquid in a rotating horizontal cylinder, J. Fluid Mech. 76, 113–125 (1976)

    Article  MATH  Google Scholar 

  51. S.T. Thoroddsen, L. Mahadevan: Experimental study of coating flows in a partially-filled horizontally rotating cylinder, Exp. Fluids 23, 1–13 (1997)

    Article  Google Scholar 

  52. J. Kim, H. Kido, J.V. Zoval, D. Gagné, R. Peytavi, F.J. Picard, M. Bastien, M. Boissinot, M.G. Bergeron, M.J. Madou: Rapid and automated sample preparation for nucleic acid extraction on a microfluidic CD, Int. Symp. LifeChips (2006), Poster Abstracts

    Google Scholar 

  53. N. Kim, C.M. Dempsey, J.V. Zoval, J. Sze, M.J. Madou: Automated microfluidic compact disc (CD) cultivation system of C. elegans, Sens. Actuators B 122(2), 511–518 (2007)

    Article  Google Scholar 

  54. E. Le Bourg: A review of the effects of microgravity and of hypergravity on aging and longevity, Exp. Gerontol. 34, 319–336 (1999)

    Article  Google Scholar 

  55. H. Wu, T.W. Odom, D.T. Chiu, G.M. Whitesides: Fabrication of complex three-dimensional microchannel systems in PDMS, J. Am. Chem. Soc. 125, 554–559 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jim V. Zoval , Guangyao Jia , Horacio Kido , Jitae Kim , Nahui Kim or Marc J. Madou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Zoval, J.V., Jia, G., Kido, H., Kim, J., Kim, N., Madou, M.J. (2010). Centrifuge-Based Fluidic Platforms. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics