Skip to main content

G-Protein Coupled Receptors: Progress in Surface Display and Biosensor Technology

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 15k Accesses

Abstract

Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by these receptors leads to activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs, biosensors etc., greater attention will focus on assay development to allow for miniaturization, ultrahigh throughput, and eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms which should be adaptable for such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

ATP:

adenosine triphosphate

FCS:

fluorescence correlation spectroscopy

FP:

fluorescence polarization

FPR:

N-formyl peptide receptor

GDP:

guanosine diphosphate

GFP:

green fluorescent protein

GPCR:

G-protein coupled receptor

GTP:

guanosine triphosphate

HTS:

high throughput screening

IMAC:

immobilized metal ion affinity chromatography

NTA:

nitrilotriacetate

PLC:

phospholipase C

PWR:

plasmon-waveguide resonance

SPR:

surface plasmon resonance

TCM:

tetracysteine motif

TIRF:

total internal reflection fluorescence

TMR:

tetramethylrhodamine

TPE-FCCS:

two-photon excitation fluorescence cross-correlation spectroscopy

YFP:

yellow fluorescent protein

cAMP:

cyclic adenosine monophosphate

References

  1. A. Wise, K. Gearing, S. Rees: Target validation of G-protein coupled receptors, Drug Discov. Today 7, 235–246 (2002)

    Article  Google Scholar 

  2. S.G. Rasmussen, H.J. Choi, D.M. Rosenbaum, T.S. Kobilka, F.S. Thian, P.C. Edwards: Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor, Nature 450, 383–387 (2007)

    Article  Google Scholar 

  3. K.L. Pierce, R.T. Premont, R.J. Lefkowitz: Seven-transmembrane receptors, Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002)

    Article  Google Scholar 

  4. D.K. Vassilatis, J.G. Hohmann, H. Zeng, F. Li, J.E. Ranchalis, M.T. Mortrud: The G protein-coupled receptor repertoires of human and mouse, Proc. Natl. Acad. Sci. USA 100, 4903–4908 (2003)

    Article  Google Scholar 

  5. V.V. Verkhusha, K.A. Lukyanov: The molecular properties and applications of anthozoa fluorescent proteins and chromoproteins, Nat. Biotechnol. 22, 289–296 (2004)

    Article  Google Scholar 

  6. T.H. Cooper, W.R. Leifert, R.V. Glatz, E.J. McMurchie: Expression and characterisation of functional lanthanide binding tags fused to a Gα-protein and muscarinic (M2) receptor, J. Bionanosci. 2(1), 27–34 (2008)

    Article  Google Scholar 

  7. S.R. Adams, R.E. Campbell, L.A. Gross, B.R. Martin, G.K. Walkup, Y. Yao: New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications, J. Am. Chem. Soc. 124, 6063–6076 (2002)

    Article  Google Scholar 

  8. C. Hoffmann, G. Gaietta, M. Bunemann, S.R. Adams, S. Oberdorff-Maass, B. Behr: A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells, Nat. Methods 2, 171–176 (2005)

    Article  Google Scholar 

  9. M.P. Caulfield, N.J. Birdsall: International union of pharmacology. XVII. classification of muscarinic acetylcholine receptors, Pharmacol. Rev. 50, 279–290 (1998)

    Google Scholar 

  10. A.M. Liu, M.K. Ho, C.S. Wong, J.H. Chan, A.H. Pau, Y.H. Wong: Gα(16/z) chimeras efficiently link a wide range of G protein-coupled receptors to calcium mobilization, J. Biomol. Screen. 8, 39–49 (2003)

    Article  Google Scholar 

  11. A. Hazari, V. Lowes, J.H. Chan, C.S. Wong, M.K. Ho, Y.H. Wong: Replacement of the α 5 helix of Gα 16 with gα s-specific sequences enhances promiscuity of Gα 16 toward Gs-coupled receptors, Cell Signal. 16, 51–62 (2004)

    Article  Google Scholar 

  12. T.T. Amatruda III, D.A. Steele, V.Z. Slepak, M.I. Simon: Gα 16, a G protein α subunit specifically expressed in hematopoietic cells, Proc. Natl. Acad. Sci. USA 88, 5587–5591 (1991)

    Article  Google Scholar 

  13. S. Offermanns, M.I. Simon: Gα 15 and Gα 16 couple a wide variety of receptors to phospholipase C, J. Biol. Chem. 270, 15175–15180 (1995)

    Article  Google Scholar 

  14. X. Zhu, L. Birnbaumer: G protein subunits and the stimulation of phospholipase C by Gs- and Gi-coupled receptors: Lack of receptor selectivity of Gα(16) and evidence for a synergic interaction between Gβγ and the α subunit of a receptor activated G protein, Proc. Natl. Acad. Sci. USA 93, 2827–2831 (1996)

    Article  Google Scholar 

  15. G. Milligan, F. Marshall, S. Rees: G16 as a universal G protein adapter: Implications for agonist screening strategies, Trends Pharmacol. Sci. 17, 235–237 (1996)

    Article  Google Scholar 

  16. J.W. Lee, S. Joshi, J.S. Chan, Y.H. Wong: Differential coupling of μ-, δ-, and κ-opioid receptors to Gα 16-mediated stimulation of phospholipase C, J. Neurochem. 70, 2203–2211 (1998)

    Article  Google Scholar 

  17. E. Kostenis: Is Gα 16 the optimal tool for fishing ligands of orphan G-protein-coupled receptors?, Trends Pharmacol. Sci. 22, 560–564 (2001)

    Article  Google Scholar 

  18. B.R. Conklin, Z. Farfel, K.D. Lustig, D. Julius, H.R. Bourne: Substitution of three amino acids switches receptor specificity of Gq α to that of Gi α, Nature 363, 274–276 (1993)

    Article  Google Scholar 

  19. B.R. Conklin, P. Herzmark, S. Ishida, T.A. Voyno-Yasenetskaya, Y. Sun, Z. Farfel: Carboxyl-terminal mutations of Gq α and Gs α that alter the fidelity of receptor activation, Mol. Pharmacol. 50, 885–890 (1996)

    Google Scholar 

  20. E. Kostenis, F.Y. Zeng, J. Wess: Functional characterization of a series of mutant G protein α q subunits displaying promiscuous receptor coupling properties, J. Biol. Chem. 273, 17886–17892 (1998)

    Article  Google Scholar 

  21. S.M. Mody, M.K. Ho, S.A. Joshi, Y.H. Wong: Incorporation of Gα(z)-specific sequence at the carboxyl terminus increases the promiscuity of Gα(16) toward G(i)-coupled receptors, Mol. Pharmacol. 57, 13–23 (2000)

    Google Scholar 

  22. C.H. Klaassen, P.H. Bovee-Geurts, G.L. Decaluwe, W.J. DeGrip: Large-scale production and purification of functional recombinant bovine rhodopsin with the use of the baculovirus expression system, Biochem. J. 342, 293–300 (1999)

    Article  Google Scholar 

  23. D. Ott, Y. Neldner, R. Cebe, I. Dodevski, A. Pluckthun: Engineering and functional immobilization of opioid receptors, Protein Eng. Design Sel. 18, 153–160 (2005)

    Article  Google Scholar 

  24. R.V. Glatz, W.R. Leifert, T.H. Cooper, K. Bailey, C.S. Barton, A.S. Martin: Molecular engineering of G protein-coupled receptors and G proteins for cell-free biosensing, Aust. J. Chem. 60, 309 (2007)

    Article  Google Scholar 

  25. C.S. Barton, R.V. Glatz, A.S. Martin, L. Waniganayake, E.J. McMurchie, W.R. Leifert: Interaction of self-assembled monolayers incorporating NTA disulfide with multilength histidine-tagged Gα i1 subunits, J. Bionanosci. 1, 22–30 (2007)

    Article  Google Scholar 

  26. P. Stenlund, G.J. Babcock, J. Sodroski, D.G. Myszka: Capture and reconstitution of G protein-coupled receptors on a biosensor surface, Anal. Biochem. 316, 243–250 (2003)

    Article  Google Scholar 

  27. J.C. Owicki: Fluorescence polarization and anisotropy in high throughput screening: Perspectives and primer, J. Biomol. Screen. 5, 297–306 (2000)

    Article  Google Scholar 

  28. C.J. Daly, J.C. McGrath: Fluorescent ligands, antibodies, and proteins for the study of receptors, Pharmacol. Ther. 100, 101–118 (2003)

    Article  Google Scholar 

  29. P. Banks, M. Harvey: Considerations for using fluorescence polarization in the screening of G protein-coupled receptors, J. Biomol. Screen. 7, 111–117 (2002)

    Article  Google Scholar 

  30. J.L. Swift, M.C. Burger, D. Massotte, T.E. Dahms, D.T. Cramb: Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: Cell membrane nanopatches containing the human micro-opioid receptor, Anal. Chem. 79, 6783–6791 (2007)

    Article  Google Scholar 

  31. A. Waller, P. Simons, E.R. Prossnitz, B.S. Edwards, L.A. Sklar: High throughput screening of G-protein coupled receptors via flow cytometry, Comb. Chem. High Throughput Screen. 6, 389–397 (2003)

    Article  Google Scholar 

  32. T. Mirzabekov, H. Kontos, M. Farzan, W. Marasco, J. Sodroski: Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5, Nat. Biotechnol. 18, 649–654 (2000)

    Article  Google Scholar 

  33. K.L. Martinez, B.H. Meyer, R. Hovius, K. Lundstrom, H. Vogel: Ligand binding to G protein-coupled receptors in tethered cell membranes, Langmuir 19, 10925–10929 (2003)

    Article  Google Scholar 

  34. Y. Fang, A.G. Frutos, J. Lahiri: Membrane protein microarrays, J. Am. Chem. Soc. 124, 2394–2395 (2002)

    Article  Google Scholar 

  35. Y. Fang, A.G. Frutos, B. Webb, Y. Hong, A. Ferrie, F. Lai: Membrane biochips, BioTechniques Supplement, 62–65 (2002)

    Google Scholar 

  36. Y. Fang, A.G. Frutos, J. Lahiri: G-protein-coupled receptor microarrays, ChemBioChem 3, 987–991 (2002)

    Article  Google Scholar 

  37. Y. Fang, J. Peng, A.M. Ferrie, R.S. Burkhalter: Air-stable G protein-coupled receptor microarrays and ligand binding characteristics, Anal. Chem. 78, 149–155 (2006)

    Article  Google Scholar 

  38. N.M. Rao, V. Silin, K.D. Ridge, J.T. Woodward, A.L. Plant: Cell membrane hybrid bilayers containing the G-protein-coupled receptor CCR5, Anal. Biochem. 307, 117–130 (2002)

    Article  Google Scholar 

  39. O. Karlsson, L. Stefan: Flow-mediated on-surface reconsititution of G-protein coupled receptors for applications in surface plasmon resonance biosensors, Anal. Biochem. 300, 132–138 (2002)

    Article  Google Scholar 

  40. G. Tollin, Z. Salamon, V.J. Hruby: Techniques: Plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions, Trends Pharmacol. Sci. 24, 655–659 (2003)

    Article  Google Scholar 

  41. S. Devanathan, Z. Yao, Z. Salamon, B. Kobilka, G. Tollin: Plasmon-waveguide resonance studies of ligand binding to the human beta 2-adrenergic receptor, Biochemistry 43, 3280–3288 (2004)

    Article  Google Scholar 

  42. I.D. Alves, S.M. Cowell, Z. Salamon, S. Devanathan, G. Tollin, V.J. Hruby: Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy, Mol. Pharmacol. 65, 1248–1257 (2004)

    Article  Google Scholar 

  43. T.Z. Wu: A piezoelectric biosensor as an olfactory receptor for odour detection: Electronic nose, Biosens. Bioelectron. 14, 9–18 (1999)

    Article  Google Scholar 

  44. G. Milligan: Principles: Extending the utility of [35S]GTPγS binding assays, Trends Pharmacol. Sci. 24, 87–90 (2003)

    Article  Google Scholar 

  45. C. Harrison, J.R. Traynor: The [35S]GTPγS binding assay: Approaches and applications in pharmacology, Life Sci. 74, 489–508 (2003)

    Article  Google Scholar 

  46. M. Bunemann, M. Frank, M.J. Lohse: Gi protein activation in intact cells involves subunit rearrangement rather than dissociation, Proc. Natl. Acad. Sci. USA 100, 16077–16082 (2003)

    Article  Google Scholar 

  47. C. Bieri, O.P. Ernst, S. Heyse, K.P. Hofmann, H. Vogel: Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation, Nat. Biotechnol. 17, 1105–1108 (1999)

    Article  Google Scholar 

  48. L.A. Sklar, J. Vilven, E. Lynam, D. Neldon, T.A. Bennett, E. Prossnitz: Solubilization and display of G protein-coupled receptors on beads for real-time fluorescence and flow cytometric analysis, BioTechniques 28, 975–976 (2000)

    Google Scholar 

  49. P.C. Simons, M. Shi, T. Foutz, D.F. Cimino, J. Lewis, T. Buranda: Ligand-receptor-G-protein molecular assemblies on beads for mechanistic studies and screening by flow cytometry, Mol. Pharmacol. 64, 1227–1238 (2003)

    Article  Google Scholar 

  50. A. Waller, P.C. Simons, S.M. Biggs, B.S. Edwards, E.R. Prossnitz, L.A. Sklar: Techniques: GPCR assembly, pharmacology and screening by flow cytometry, Trends Pharmacol. Sci. 25, 663–669 (2004)

    Article  Google Scholar 

  51. T.A. Bennett, T.A. Key, V.V. Gurevich, R. Neubig, E.R. Prossnitz, L.A. Sklar: Real-time analysis of G protein-coupled receptor reconstitution in a solubilized system, J. Biol. Chem. 276, 22453–22460 (2001)

    Article  Google Scholar 

  52. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li: Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307, 538–544 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wayne R. Leifert Dr. , Tamara H. Cooper or Kelly Bailey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Leifert, W.R., Cooper, T.H., Bailey, K. (2010). G-Protein Coupled Receptors: Progress in Surface Display and Biosensor Technology. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics