Skip to main content

Biological Molecules in Therapeutic Nanodevices

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we discuss the incorporation of molecules into nanodevices as functional device components. Our primary focus is on biological molecules, although we also discuss the use of organic molecules as functional components of supramolecular nanodevices. Our primary device interest is in devices used in human therapy and diagnosis, though when it is informative, we discuss other nontherapeutic nanodevices containing biomolecular components. We discuss design challenges associated with devices built from prefabricated components (biological macromolecules) but that are not as frequently associated with fully synthetic nanodevices. Some design challenges (abstraction of device object properties, inputs, and outputs) can be addressed using existing systems engineering approaches and tools (including unified modeling language), whereas others (selection of optimal biological macromolecules from the billions available) have not been fully addressed. We discuss various assembly strategies applicable to biological macromolecules and organic molecules (self-assembly, chemoselective conjugation) and their advantages and disadvantages. We provide an example of a functional mesoscale device, a planar field-effect transistor (FET) protein sensor, that depends on nanoscale components for its function. We also use the sensor platform to illustrate how protein and other molecular engineering approaches can address nanoscale technological problems, and argue that protein engineering is a legitimate nanotechnology in this application. In developing the functional FET sensor, both direct adsorption of protein analyte receptors as well as linkage of receptors to the sensing surface through a polymer layer were tested. However, in the realized FET sensor, interfaces consist of a polymer layer linked to the semiconductor surface and to an analyte receptor (a protein). Nanotribology and other surface-science investigations of the interfaces revealed phenomena not previously documented for nanoscale protein interfaces (lubrication by directly adsorbed proteins, increases in friction force associated with polymer-mediated increases in sample compliance). Furthermore, the studies revealed wear of polymer and receptor proteins from semiconductor surfaces by an atomic force microscopy (AFM) tip which was not a concerted process, but rather depth of wear increased with increasing load on the cantilever. These studies also revealed that the polymer–protein interfaces were disturbed by nanonewton forces, suggesting that interfaces of immunoFET protein sensors translated to in vivo use must likely be protected from, or hardened to endure, abrasion from tissue. The results demonstrate that nanoscience (in this case, nanotribology) is needed to design and characterize functional planar immunoFET sensors, even though the sensors themselves are mesoscale devices. The results further suggest that modifications made to the sensor interfaces to address these nanoscale challenges may be best accomplished by protein and interfacial engineering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

one-dimensional

3-D:

three-dimensional

AA:

amino acid

AFM:

atomic force microscope

AFM:

atomic force microscopy

AMU:

atomic mass unit

APDMES:

aminopropyldimethylethoxysilane

APTES:

aminopropyltriethoxysilane

CDR:

complementarity determining region

CMC:

cell membrane complex

CMC:

critical micelle concentration

COG:

cost of goods

CP:

circularly permuted

DPN:

dip-pen nanolithography

EDC:

1-ethyl-3-(3-diamethylaminopropyl) carbodiimide

FET:

field-effect transistor

IKVAV:

isoleucine–lysine–valine–alanine–valine

MOSFET:

metal–oxide–semiconductor field-effect transistor

MRI:

magnetic resonance imaging

SCFv:

single-chain fragment variable

SWCNT:

single-wall carbon nanotube

SWCNT:

single-walled carbon nanotube

UAA:

unnatural AA

UML:

unified modeling language

VHH:

variable heavy–heavy

ds:

double-stranded

References

  1. S.C. Lee, R. Parthasarathy, T. Duffin, K. Botwin, T. Beck, G. Lange, J. Zobel, D. Jansson, D. Kunneman, E. Rowold, C.F. Voliva: Antibodies to PAMAM dendrimers: Reagents for immune detection assembly and patterning of dendrimers. In: Dendrimers and Other Dendritic Polymers, ed. by D. Tomalia, J. Frechet (Wiley, London 2001) pp. 559–566

    Google Scholar 

  2. S.C. Lee: Biotechnology for nanotechnology, Trends Biotechnol. 16, 239–240 (1998)

    Article  Google Scholar 

  3. S.C. Lee: Engineering the protein components of nanobiological devices. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998) pp. 67–74

    Google Scholar 

  4. S.C. Lee: How a molecular biologist can wind up organizing nanotechnology meetings. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998)

    Google Scholar 

  5. S.C. Lee: The nanobiological strategy for construction of nanodevices. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998) pp. 3–14

    Google Scholar 

  6. S.C. Lee: A biological nanodevice for drug delivery, National Science and Technology Council. IWGN Workshop Report: Nanotechnology Research Directions. International Technology Research Institute, World Technology Division (Kluwer, Baltimore 1999) pp. 91–92

    Google Scholar 

  7. S.C. Lee, R. Parthasarathy, K. Botwin: Proteinpolymer conjugates: Synthesis of simple nanobiotechnological devices, Polym. Prepr. 40, 449–450 (1999)

    Google Scholar 

  8. L. Jelinski: Biologically related aspects of nanoparticles, nanostructured materials and nanodevices. In: Nanostructure Science and Technology, ed. by R.W. Siegel, E. Hu, M.C. Roco (Kluwer, Dordrecht 1999) pp. 113–130

    Google Scholar 

  9. B.R. Smith, J. Heverhagen, M. Knopp, P. Schmalbrock, J. Shapiro, M. Shiomi, N. Moldovan, M. Ferrari, S.C. Lee: Magnetic resonance imaging of atherosclerosis in vivo using biochemically targeted ultrasmall superparamagnetic iron oxide particles (SPIONs), Biomed. Microdevices 9, 719–728 (2007)

    Article  Google Scholar 

  10. A.J. Nijdam, T.R. Nicholson III, J. Shapiro, B.R. Smith, J.T. Heverhagen, P. Schmalbrock, M.V. Knopp, A. Kebbel, D. Wang, S.C. Lee: Biochemically targeted nanoparticulate contrast agents for magnetic resonance imaging diagnosis of cardiovascular disease, Curr. Nanosci. 5, 88–102 (2009)

    Article  Google Scholar 

  11. J.R. Baker Jr.: Therapeutic nanodevices. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998) pp. 173–183

    Google Scholar 

  12. R. Duncan: Drug targeting: Where are we now and where are we heading?, J. Drug Target. 5, 1–4 (1997)

    Article  Google Scholar 

  13. R. Duncan, S. Gac-Breton, R. Keane, Y.N. Sat, R. Satchi, F. Searle: Polymer-drug conjugates, PDEPT and PELT: Basic principles for design and transfer from the laboratory to clinic, J. Cont. Release 74, 135–146 (2001)

    Article  Google Scholar 

  14. D.S. Goldin, C.A. Dahl, K.L. Olsen, L.H. Ostrach, R.D. Klausner: Biomedicine. The NASA-NCI collaboration on biomolecular sensors, Science 292, 443–444 (2001)

    Article  Google Scholar 

  15. S.C. Lee: Dendrimers in nanobiological devices. In: Dendrimers and Other Dendritic Polymers, ed. by D. Tomalia, J. Frechet (Wiley, London 2001) pp. 548–557

    Google Scholar 

  16. J.R. Baker Jr., A. Quintana, L. Piehler, M. Banazak-Holl, D. Tomalia, E. Racka: The synthesis and testing of anti-cancer therapeutic nanodevices, Biomed. Microdevices 3, 61–69 (2001)

    Article  Google Scholar 

  17. K.D. Bhalerao, E. Eteshola, M. Keener, S.C. Lee: Nanodevice design through the functional abstraction of biological macromolecules, Appl. Phys. Lett. 87, 143902–143904 (2005)

    Article  Google Scholar 

  18. S.C. Lee, K. Bhalerao, M. Ferrari: Object oriented design tools for supramolecular devices and biomedical nanotechnology, Ann. New York Acad. Sci. 1013, 110–123 (2004)

    Article  Google Scholar 

  19. J.M. Harris, N.E. Martin, M. Modi: Pegylation: A novel process for modifying pharmacokinetics, Clin. Pharmacokin. 40, 539–551 (2001)

    Article  Google Scholar 

  20. S.B.H. Kent: Building proteins through chemistry: Total chemical synthesis of protein molecules by chemical ligation of unprotected protein segments. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998) pp. 75–92

    Google Scholar 

  21. C.A. Janeway, P. Travers, M. Walport, J.D. Capra: Immunobiology (Elsevier, London 1999)

    Google Scholar 

  22. S.C. Lee, M.S. Leusch, V.A. Luckow, P. Olins: Method of producing recombinant viruses in bacteria, US Patent 5348886 (1993)

    Google Scholar 

  23. M.S. Leusch, S.C. Lee, P.O. Olins: A novel hostvector system for direct selection of recombinant baculoviruses (bacmids) in E. coli, Gene 160, 191–194 (1995)

    Article  Google Scholar 

  24. V.A. Luckow, S.C. Lee, G.F. Barry, P.O. Olins: Efficient generation of infectious recombinant baculoviruses by site-specific, transposon-mediated insertion of foreign DNA into a baculovirus genome propagated in E. coli, J. Virol. 67, 4566–4579 (1993)

    Google Scholar 

  25. T. Gardner, C.R. Cantor, J.J. Collins: Construction of a genetic toggle switch in E. coli, Nature 403, 339–342 (2000)

    Article  Google Scholar 

  26. J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, J.J. Collins: Designer gene networks: Towards fundamental cellular control, Chaos 11, 107–220 (2001)

    Article  Google Scholar 

  27. S. Uppuluri, D.R. Swanson, L.T. Piehler, J. Li, G. Hagnauer, D.A. Tomalia: Core shell tecto(dendrimers). I. Synthesis and characterization of saturated shell models, Adv. Mater. 12, 796–800 (2000)

    Article  Google Scholar 

  28. A.K. Patri, I.J. Majoros, J.R. Baker Jr.: Dendritic polymer macromolecular carriers for drug delivery, Curr. Opin. Chem. Biol. 6, 466–471 (2002)

    Article  Google Scholar 

  29. A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A.K. Patri, T. Thomas, J. Mule, J.R. Baker Jr.: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor, Pharma. Res. 19, 1310–1316 (2002)

    Article  Google Scholar 

  30. Y. Choi, T. Thomas, A. Kotlyar, M. Islam, J. Baker Jr.: Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting, Chem. Biol. 12, 35–43 (2005)

    Article  Google Scholar 

  31. Y. Choi, A. Mecke, B.G. Orr, M.M. Banaszak Holl, J.R. Baker Jr.: DNA-directed synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters, Nano Lett. 4, 391–397 (2004)

    Article  Google Scholar 

  32. D.G. Mullen, A.M. Desai, J.N. Waddell, X.-M. Cheng, C.V. Kelly, D.Q. McNerny, I.J. Majoros, J.R. Baker Jr., L.M. Sander, B.G. Orr, M.M. Banaszak Holl: The implications of stochastic synthesis for the conjugation of functional groups to nanoparticles, Bioconjug. Chem. 19, 1748–1752 (2008)

    Article  Google Scholar 

  33. T.R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, G. Schubert: Maskless electron beam lithography: Propects, progress and challenges, Microelectron. Eng. 61, 285–293 (2002)

    Article  Google Scholar 

  34. M. Guthold, R. Superfine, R. Taylor: The rules are changing: Force measurements on single molecules and how they relate to bulk reaction kinetics and energies, Biomed. Microdevices 3, 9–18 (2001)

    Article  Google Scholar 

  35. L.M. Demers, D.S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, C.A. Mirkin: Direct patterning of modified oligonucleotides on metals and insulatos by dip-pen nanolithography, Science 296, 1836–1838 (2002)

    Article  Google Scholar 

  36. K.-B. Lee, S.-J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich: Protein nanoarrays generated by dippen nanolithography, Science 295, 1702–1705 (2002)

    Article  Google Scholar 

  37. M. Ferrari, J. Liu: The engineered course of treatment, Mech. Eng. 123, 44–47 (2001)

    Google Scholar 

  38. K.E. Drexler: Engines of Creation: The Coming Era of Nanotechnology (Anchor Books, New York 1986)

    Google Scholar 

  39. J. Cumings, A. Zetti: Low-friction nanoscale linear bearing realized frommultiwall carbon nanotubes, Science 289, 602–604 (2000)

    Article  Google Scholar 

  40. D.J. Hornbaker, S.-J. Kahng, S. Mirsa, B.W. Smith, A.T. Johnson, E.J. Mele, D.E. Luzzi, A. Yazdoni: Mapping the one-dimensional electronic states of nanotube peapod structures, Science 295, 828–831 (2002)

    Article  Google Scholar 

  41. C. Dekker: Carbon nanotubes as molecular quantum wires, Phys. Today 28, 22–28 (1999)

    Article  Google Scholar 

  42. M.-C. Jones, J.-C. Leroux: Polymeric micellesa new generation of colloidal drug carriers, Eur. J. Pharma. Biopharma. 48, 101–111 (1999)

    Article  Google Scholar 

  43. I. Uchegbu: Parenteral drug delivery: 1, Pharma. J. 263, 309–318 (1999)

    Google Scholar 

  44. I. Uchegbu: Parenteral drug delivery: 2, Pharma. J. 263, 355–359 (1999)

    Google Scholar 

  45. J.D. Hartgerink, E.R. Zubarev, S.I. Stupp: Supramolecular one-dimensional objects, Curr. Opin. Solid State Mater. Sci. 5, 355–361 (2001)

    Article  Google Scholar 

  46. L.C. Palmer, Y.S. Velichko, M. Olvera De La Cruz, S.I. Stupp: Supramolecular self-assembly codes for functional structures, Philos. Trans. R. Soc. A 365, 1417–1433 (2007)

    Article  Google Scholar 

  47. G.A. Silva, C. Catherine, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp: Selective differentiation of neural progenitor cells by high-epitope density nanofibers, Science 303, 1352–1355 (2004)

    Article  Google Scholar 

  48. V.M. Tysseling-Mattiace, V. Sahni, K.L. Niece, D. Birch, C. Czeisler, M. Fehlings, S.I. Stupp, J.A. Kessler: Self-assembling nanofibers inhibit glial scar gormation and promote axon elongation after spinal cord injury, J. Neurosci. 28, 3814–3823 (2008)

    Article  Google Scholar 

  49. S. Fernandez-Lopez, H.-S. Kim, E.C. Choi, M. Delgado, J.R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D.A. Weinberger, K.M. Wilcoxen, M. Ghardiri: Antibacterial agents based on the cyclic D,L-alpha-peptide architecture, Nature 412, 452–455 (2001)

    Article  Google Scholar 

  50. A. Saghatelian, Y. Yokobayashi, K. Soltani, M.R. Ghadiri: A chiroselective peptide replicator, Nature 409, 777–778 (2001)

    Article  Google Scholar 

  51. T. Hamouda, A. Myc, B. Donovan, A.Y. Shih, J.D. Reuter, J.R. Baker Jr.: A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi, Microbiol. Res. 156, 1–7 (2001)

    Article  Google Scholar 

  52. J. Davies: Aminoglycoside-aminocyclitol antibiotics and their modifying enzymes. In: Antibiotics in Laboratory Medicine, ed. by V. Lorian (Williams and Wilkins, Baltimore 1984) pp. 474–489

    Google Scholar 

  53. M.J. Heller: Utilization of synthetic DNA for molecular electronic and photonic-based device applications. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998) pp. 59–66

    Google Scholar 

  54. Z. Ma, S. Taylor: Nucleic acid triggered catalytic drug release, Proc. Natl. Acad. Sci. USA 97, 11159–11163 (2000)

    Article  Google Scholar 

  55. R.C. Merkle: Biotechnology as a route to nanotechnology, Trends Biotechnol. 17, 271–274 (1999)

    Article  Google Scholar 

  56. N.C. Seeman, J. Chen, Z. Zhang, B. Lu, H. Qiu, T.-J. Fu, Y. Wang, X. Li, J. Qi, F. Liu, L.A. Wenzler, S. Du, J.E. Mueller, H. Wang, C. Mao, W. Sun, Z. Shen, M.H. Wong, R. Sha: A bottom-up approach to nanotechnology using DNA. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998) pp. 45–58

    Google Scholar 

  57. G. Lemieux, C. Bertozzi: Chemoselective ligation reactions with proteins, oligosaccharides and cells, Trends Biotechnol. 16, 506–512 (1998)

    Article  Google Scholar 

  58. R. Offord, K. Rose: Multicomponent synthetic constructs. In: Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, ed. by S.C. Lee, L. Savage (IBC, Southborough 1998) pp. 93–105

    Google Scholar 

  59. S.C. Lee, R. Parthasarathy, K. Botwin, D. Kunneman, E. Rowold, G. Lange, J. Zobel, T. Beck, T. Miller, W. Hood, J. Monahan, R. Jansson, J.P. McKearn, C.F. Voliva: Biochemical and immunological properties of cytokines conjugated to dendritic polymers, Biomed. Microdevices Biomems Biomed. Nanotechnol. 6, 191–201 (2004)

    Article  Google Scholar 

  60. S.C. Lee, R. Parthasarathy, T. Duffin, K. Botwin, T. Beck, G. Lange, J. Zobel, D. Kunneman, E. Rowold, C.F. Voliva: Recognition properties of antibodies to PAMAM dendrimers and their use in immune detection of dendrimers, Biomed. Microdevices 3, 51–57 (2001)

    Google Scholar 

  61. G.T. Hermanson: Bioconjugate Chemistry (Academic, San Diego 1996)

    Google Scholar 

  62. S. Topell, R. Glockshuber: Circular permutation of the green fluorescent protein, Meth. Mol. Biol. 183, 31–48 (2002)

    Google Scholar 

  63. A. Rojas, S. Garcia-Vallve, J. Palau, A. Romeu: Circular permutations in proteins, Biologia 54, 255–277 (1999)

    Google Scholar 

  64. T.U. Schwartz, R. Walczak, G. Blobel: Circular permutation as a tool to reduce surface entropy triggers crystallization of the signal recognition particle receptor beta subunit, Protein Sci. 13, 2814–2818 (2004)

    Article  Google Scholar 

  65. U. Heinemann, M. Hahn: Circular permutation of polypeptide chains: Implications for protein folding and stability, Prog. Biophys. Mol. Biol. 64, 121–143 (1996)

    Article  Google Scholar 

  66. A. Buchwalder, H. Szadkoski, K. Kirschner: A fully active variant of dihydrofolate reductase with a circularly permuted sequence, Biochem. 31, 1621–1630 (1992)

    Article  Google Scholar 

  67. L.S. Mullins, K. Wesseling, J.M. Kuo, J.B. Garrett, F.M. Raushel: Transposition of protein sequences: Circular permutation of ribonuclease T1, J. Am. Chem. Soc. 116, 5529–5533 (1994)

    Article  Google Scholar 

  68. M. Hahn, K. Piotukh, R. Borriss, U. Heinemann: Native-like in vivo folding of a circularly permuted jellyroll protein shown by crystal structure analysis, Proc. Natl. Acad. Sci. USA 91, 10417–10421 (1994)

    Article  Google Scholar 

  69. Y.R. Yang, H.K. Schachznan: Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains, Proc. Natl. Acad. Sci. USA 90, 11980–11984 (1993)

    Article  Google Scholar 

  70. X. Lin, G. Koelsch, J.A. Loy, J. Tang: Rearranging the domains of pepsinogen, Protein Sci. 4, 159–166 (1995)

    Article  Google Scholar 

  71. M.L. Vignais, C. Corbier, G. Mulliert, C. Branlant, G. Branlant: Circular permutation within the coenzyme binding domain of the tetrameric glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus, Protein Sci. 4, 994–1000 (1995)

    Article  Google Scholar 

  72. E. Eteshola, C.D. Van Valkenburgh, S. Merlin, E. Rowold, J. Adams, R. Ibdah, L.E. Pegg, A. Donelly, E. Rowold, J. Klover, S.C. Lee: Screening of a library of circularly permuted proteins on phage to manipulate protein topography, J. Nanoeng. Nanosyst. 219, 45–55 (2006)

    Google Scholar 

  73. E. Eteshola, M.T. Keener, M.A. Elias, J. Shapiro, L.J. Brillson, B. Bhushan, S.C. Lee: Engineering functional protein interfaces for immunologically modified field effect transistors (ImmunoFETs) by molecular genetic means, J. R. Soc. Interface 5, 123–127 (2008)

    Article  Google Scholar 

  74. E. Eteshola, L. Brillson, S.C. Lee: Selection and characteristics of peptides that bind thermally grown silicon dioxide films, Biomol. Eng. 22, 202–204 (2005)

    Article  Google Scholar 

  75. R.R. Naik, L.L. Brott, S.J. Clarson, M.O. Stone: Silica-precipitating peptides isolated from a combinatorial phage display peptide library, J. Nanosci. Nanotechnol. 2, 95–100 (2002)

    Article  Google Scholar 

  76. E.M. Krauland, B.R. Peelle, K.D. Wittrup, A.M. Belcher: Peptide tags for enhanced cellular and protein adhesion to single-crystalline sapphire, Biotechnol. Bioeng. 97, 1009–1020 (2007)

    Article  Google Scholar 

  77. L. Wang, J. Xie, P.G. Schultz: Expanding the genetic code, Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006)

    Article  Google Scholar 

  78. J. Xie, P.G. Schultz: A chemical toolkit for proteins – an expanded genetic code, Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006)

    Article  Google Scholar 

  79. N. Hino, A. Hayashi, K. Sakamoto, S. Yokoyama: Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code, Nat. Protoc. 1, 2957–2962 (2006)

    Article  Google Scholar 

  80. K. Rogers: Principles of affinity-based biosensors, Mol. Biotechnol. 14, 109–129 (2000)

    Article  Google Scholar 

  81. M.J. Schoning, A. Poghossian: Recent advances in biologically sensitive field-effect transistors (BioFETS), Analyst 127, 1137–1151 (2002)

    Article  Google Scholar 

  82. P. Bergveld, J. Hendrikes, W. Olthuis: Theory and application of the material work function for chemical sensors based on the field effect principle, Meas. Sci. Technol. 9, 1801–1808 (1998)

    Article  Google Scholar 

  83. W. Olthius, P. Bergveld, J. Kruise: The exploitation of ISFETs to determine acid-base behavior of proteins, Electrochim. Acta 43, 3483–3488 (1997)

    Article  Google Scholar 

  84. R.B. Schasfoort, R.P. Kooyman, P. Bergveld, J. Greve: A new approach to ImmunoFET operation, Biosens. Bioelectron. 5, 103–124 (1990)

    Article  Google Scholar 

  85. Y. Cui, Q. Wei, H. Park, C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289 (2001)

    Article  Google Scholar 

  86. P. Bergveld: A critical evaluation of direct electrical protein detection methods, Biosens. Bioelectron. 6, 55–72 (1991)

    Article  Google Scholar 

  87. J.I. Hahm, C.M. Lieber: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett. 4, 51–54 (2004)

    Article  Google Scholar 

  88. A. Star, J.C.P. Gabriel, K. Bradley, G. Gruner: Electronic detection of specific protein binding using nanotube FET devices, Nano Lett. 3, 459–463 (2003)

    Article  Google Scholar 

  89. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber: Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nat. Biotechnol. 23, 1294–1301 (2005)

    Article  Google Scholar 

  90. J. Shapiro, S. Gupta, E. Eteshola, M. Elias, X. Wen, W. Lu, L.J. Brillson, S.C. Lee: Challenges in optimization of nanobiotechnological devices illustrated by partial optimization of a protein biosensor, Proc. 2nd Int. Congr. Nanobiotechnol. Nanomed., NanoBio 2007 (Int. Association Nanotechnology, San Jose 2007), (CD)

    Google Scholar 

  91. S. Gupta, M. Elias, X. Wen, J. Shapiro, L. Brillson, W. Lu, S.C. Lee: Detection of clinically relevant levels of biological analyte under physiologic buffer using planar field effect transistors, Biosens. Bioelectron. 24, 505–511 (2008)

    Article  Google Scholar 

  92. K. Decanniere, A. Desmyter, M. Lauwereys, M.A. Ghahroudi, S. Muyldermans, L. Wyns: A single-domain antibody fragment in complex with rnase a: non-canonical loop structures and nanomolar affinity using two CDR loops, Struct. Fold Des. 7, 361–370 (1999)

    Article  Google Scholar 

  93. K. Decanniere, T.R. Transue, A. Desmyter, D. Maes, S. Muyldermans, L. Wyns: Degenerate interfaces in antigen-antibody complexes, J. Mol. Biol. 313, 473–478 (2001)

    Article  Google Scholar 

  94. A. Desmyter, K. Decanniere, S. Muyldermans, L. Wyns: Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody, J. Biol. Chem. 276, 26285–26290 (2001)

    Article  Google Scholar 

  95. A. Muruganandam, J. Tanha, S. Narang, D. Stanimirovic: Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium, FASEB Journal 16, 240–242 (2002)

    Google Scholar 

  96. S. Muyldermans: Single domain camel antibodies: Current status, Mol. Biotechnol. 74, 277–302 (2001)

    Article  Google Scholar 

  97. S. Muyldermans, M. Lauwereys: Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies, J. Mol. Recogn. 12, 131–140 (1999)

    Article  Google Scholar 

  98. L. Riechmann, S. Muyldermans: Single domain antibodies: comparison of camel VH and camelised human VH domains, J. Immunol. Meth. 231, 25–38 (1999)

    Article  Google Scholar 

  99. M.S. Hayden, L.K. Gilliland, J.A. Ledbetter: Antibody engineering, Curr. Opin. Immunol. 9, 201–212 (1997)

    Article  Google Scholar 

  100. B. Bhushan, K.J. Kwak, S. Gupta, S.C. Lee: Nanoscale adhesion, friction and wear studies of biomolecules on polymer-coated silica and alumina based surfaces, J. R. Soc. Interface 6, 719–733 (2009)

    Article  Google Scholar 

  101. Y. Han, D. Mayer, A. Offenhausser, S. Ingebrandt: Surface activation of thin silicon oxides by wet cleaning and silanization, Thin Solid Films 510, 175–180 (2006)

    Article  Google Scholar 

  102. K. Kallury, P.M. MacDonald, M. Thompson: Effect of surface water and base catalysis on the silanization of silica by (aminopropyl)alkoxysilanes studied by x-ray photoelectron spectroscopy and 13C cross-polarization/magic angle spinning nuclear magnetic resonance, Langmuir 10, 492–499 (1994)

    Article  Google Scholar 

  103. J.H. Moon, J.W. Shin, S.Y. Kim, J.W. Park: Formation of uniform aminosilane thin layers: An imine formation to measure relative surface density of the amine group, Langmuir 12, 4621–4624 (1996)

    Article  Google Scholar 

  104. B. Bhushan, D.R. Tokachichu, M.T. Keener, S.C. Lee: Morphology and adhesion of biomolecules on silicon based surfaces, Acta Biomater. 1, 327–341 (2005)

    Article  Google Scholar 

  105. S.C. Lee, M.T. Keener, D.R. Tokachichu, B. Bhushan, P.D. Barnes, B.J. Cipriany, M. Gao, L.J. Brillson: Protein binding on thermally grown silicon dioxide, J. Vac. Sci. Technol. B 23, 1856–1865 (2005)

    Article  Google Scholar 

  106. B. Bhushan, D.R. Tokachichu, M.T. Keener, S.C. Lee: Nanoscale adhesion, friction and wear studies on silicon based surfaces, Acta Biomater. 2, 39–49 (2006)

    Article  Google Scholar 

  107. S.C. Lee, M. Reugsegger, P.D. Barnes, B.R. Smith, M. Ferrari: Therapeutic nanodevices. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin, Heidelberg 2007) pp. 461–504

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen C. Lee or Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Lee, S.C., Bhushan, B. (2010). Biological Molecules in Therapeutic Nanodevices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics