Skip to main content

Next-Generation DNA Hybridization and Self-Assembly Nanofabrication Devices

  • Chapter
Book cover Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 15k Accesses

Abstract

The new era of nanotechnology presents many challenges and opportunities. One area of considerable challenge is nanofabrication, in particular the development of fabrication technologies that can evolve into viable manufacturing processes. Considerable efforts are being expended to refine classical top-down approaches, such as photolithography, to produce silicon-based electronics with nanometer-scale features. So-called bottom-up or self-assembly processes are also being researched and developed as new ways of producing heterogeneous nanostructures, nanomaterials and nanodevices. It is also hoped that there are novel ways to combine the best aspects of both top-down and bottom-up processes to create a totally unique paradigm change for the integration of heterogeneous molecules and nanocomponents into higher order structures. Over the past decade, sophisticated microelectrode array devices produced by the top-down process (photolithography) have been developed and commercialized for DNA diagnostic genotyping applications. These devices have the ability to produce electric field geometries on their surfaces that allow DNA molecules to be transported to or from any site on the surface of the array. Such devices are also able to assist in the self-assembly (via hybridization) of DNA molecules at specific locations on the array surface. Now a new generation of these microarray devices are available that contain integrated CMOS components within their underlying silicon structure. The integrated CMOS allows more precise control over the voltages and currents sourced to the individual microelectrode sites. While such microelectronic array devices have been used primarily for DNA diagnostic applications, they do have the intrinsic ability to transport almost any type of charged molecule or other entity to or from any site on the surface of the array. These include other molecules with self-assembling properties such as peptides and proteins, as well as nanoparticles, cells and even micron-scale semiconductor components. Microelectronic arrays thus have the potential to be used in a highly parallel electric field pick and place fabrication process allowing a variety of molecules and nanostructures to be organized into higher order two- and three-dimensional structures. This truly represents a synergy of combining the best aspects of top-down and bottom-up technologies into a novel nanomanufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

CMOS:

complementary metal–oxide–semiconductor

DEP:

dielectrophoresis

DNA:

deoxyribonucleic acid

RNA:

ribonucleic acid

SNP:

single nucleotide polymorphisms

References

  1. National Research Council: Small Wonders, Endless Frontiers: Review of the Nanotional Nanotechnology Initiative (National Research Council, Washington 2002)

    Google Scholar 

  2. M.P. Hughes (Ed.): Nanoelectromechanics in Engineering and Biology (CRC, Boca Raton 2003)

    Google Scholar 

  3. W.A. Goddard, D. Brenner, S. Lyshevski, G. Lafrate (Eds.): Handbook of Nanoscience, Engineering and Technology (CRC, Boca Raton 2003)

    Google Scholar 

  4. V. Balzani, M. Venturi, A. Credi (Eds.): Molecular Devices and Mechanics – Journey into the Nanoworld (Wiley-VCH, Weinheim 2003)

    Google Scholar 

  5. R. Bashir: Biologically mediated assembly of artificial nanostructures and microstructures. In: Handbook of Nanoscience, Engineering and Technology, ed. by W.A. Goddard, D. Brenner, S. Lyshevski, G. Lafrate (CRC, Boca Raton 2003) pp. 15–1–15–31, Chap. 15

    Google Scholar 

  6. M.J. Heller, R.H. Tullis: Self-organizing molecular photonic structures based on functionalized synthetic DNA polymers, Nanotechnology 2, 165–171 (1991)

    Article  Google Scholar 

  7. D.M. Hartmann, D. Schwartz, G. Tu, M. Hellerand, S.C. Esener: Selective DNA attachment of particles to substrates, J. Mater. Res. 17, 473–478 (2002)

    Article  Google Scholar 

  8. M.J. Heller: An active microelectronics device for multiplex DNA analysis, IEEE Eng. Med. Biol. 15, 100–103 (1996)

    Article  Google Scholar 

  9. R.G. Sosnowski, E. Tu, W.F. Butler, J.P. OʼConnell, M.J. Heller: Rapid determination of single base mismatch in DNA hybrids by direct electric field control, Proc. Natl. Acad. Sci. USA 94, 1119–1123 (1997)

    Article  Google Scholar 

  10. C.F. Edman, D.E. Raymond, D.J. Wu, E. Tu, R.G. Sosnowski, W.F. Butler, M. Nerenberg, M.J. Heller: Electric field directed nucleic acid hybridization on microchips, Nucl. Acids Res. 25, 4907–4914 (1997)

    Article  Google Scholar 

  11. M.J. Heller: An integrated microelectronic hybridization system for genomic research and diagnostic applications. In: Micro Total Analysis Systems, ed. by D.J. Harrison, A. van den Berg (Kluwer Academic, Dordrecht 1998) pp. 221–224

    Chapter  Google Scholar 

  12. M.J. Heller, E. Tu, A. Holmsen, R.G. Sosnowski, J.P. OʼConnell: Active microelectronic arrays for DNA hybridization analysis. In: DNA Microarrays: A Practical Approach, ed. by M. Schena (Univ. Press, Oxford 1999) pp. 167–185

    Google Scholar 

  13. M.J. Heller, A.H. Forster, E. Tu: Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and genomic applications, Electrophoresis 21, 157–164 (2000)

    Article  Google Scholar 

  14. C. Gurtner, E. Tu, N. Jamshidi, R. Haigis, T. Onofrey, C.F. Edman, R. Sosnowski, B. Wallace, M.J. Heller: Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low-conductance buffers, Electrophoresis 23, 1543–1550 (2002)

    Article  Google Scholar 

  15. M.J. Heller: DNA microarray technology: devices, systems and applications, Ann. Rev. Biomed. Eng. 4, 129–153 (2002)

    Article  Google Scholar 

  16. M.J. Heller, E. Tu, R. Martinsons, R.R. Anderson, C. Gurtner, A. Forster, R. Sosnowski: Active microelectronic array systems for DNA hybridization, genotyping, pharmacogenomics and nanofabrication applications. In: Integrated Microfabricated Devices, ed. by M.J. Heller, A. Guttman (Marcel Dekker, New York 2002) pp. 223–270, Chap. 10

    Chapter  Google Scholar 

  17. S.K. Kassengne, H. Reese, D. Hodko, J.M. Yang, K. Sarkar, P. Swanson, D.E. Raymond, M.J. Heller, M.J. Madou: Numerical modeling of transport and accumulation of DNA on electronically active biochips, Sens. Actuators B 94, 81–98 (2003)

    Article  Google Scholar 

  18. S.C. Esener, D. Hartmann, M.J. Heller, J.M. Cable: DNA assisted micro-assembly: A heterogeneous integration technology for optoelectronics, Proc. SPIE 70, 113–140 (1998)

    Google Scholar 

  19. C. Gurtner, C.F. Edman, R.E. Formosa, M.J. Heller: Photoelectrophoretic transport and hybridization of DNA on unpatterned silicon substrates, J. Am. Chem. Soc. 122(36), 8589–8594 (2000)

    Article  Google Scholar 

  20. Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. OʼConnell, M. Krihak: Electric manipulation of bioparticles and macromolecules on microfabricated electrodes, Anal. Chem. 73, 1549–1559 (2001)

    Article  Google Scholar 

  21. C.F. Edman, C. Gurtner, R.E. Formosa, J.J. Coleman, M.J. Heller: Electric-field-directed pick-and-place assembly, HDI 3(10), 30–35 (2000)

    Google Scholar 

  22. C.F. Edman, R.B. Swint, C. Gurthner, R.E. Formosa, S.D. Roh, K.E. Lee, P.D. Swanson, D.E. Ackley, J.J. Colman, M.J. Heller: Electric field directed assembly of an InGaAs LED onto silicon circuitry, IEEE Photon. Tech. Lett. 12(9), 1198–1200 (2000)

    Article  Google Scholar 

  23. C.F. Edman, M.J. Heller, R. Formosa, C. Gurtner: Methods and apparatus for the electronic homogeneous assembly and fabrication of devices, US Patent 6569382 (2003)

    Google Scholar 

  24. M.J. Heller, J.M. Cable, S.C. Esener: Methods for the electronic assembly and fabrication of devices, US Patent 6652808 (2003)

    Google Scholar 

  25. C.F. Edman, M.J. Heller, C. Gurtner, R. Formosa: Systems and devices for the photoelectrophoretic transport and hybridization of oligonucleotides, US Patent 6706473 (2004)

    Google Scholar 

  26. A. Taton, C. Mirkin, R. Letsinger: Scanometric DNA array detection with nanoparticle probes, Science 289, 1757–1760 (2000)

    Article  Google Scholar 

  27. M. Chee, R. Yang, E. Hubbell, A. Berno, X. Huang, D. Stern, J. Winkler, D. Lockhart, M. Morris, S. Fodor: Accessing genetic information with high-density DNA arrays, Science 274, 610–614 (1996)

    Article  Google Scholar 

  28. A. Pease, D. Solas, E. Sullivan, M. Cronin, C. Holmes, S. Fodor: Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc. Natl. Acad. Sci. USA 99, 5022–5026 (1994)

    Article  Google Scholar 

  29. R.J. Lipshutz, D. Morris, M. Chee, E. Hubbell, M.J. Kozal, N. Shah, N. Shen, R. Yang, S.P. Fodor: Using oligonucleotide probe arrays to access genetic diversity, Biotechniques 19(3), 442–447 (1995)

    Google Scholar 

  30. P. Swanson, R. Gelbart, E. Atlas, L. Yang, T. Grogan, W.F. Butler, D.E. Ackley, E. Sheldon: A fully multiplexed CMOS biochip for DNA analysis, Sens. Actuators B 64, 22–30 (2000)

    Article  Google Scholar 

  31. P.N. Gilles, D.J. Wu, C.B. Foster, P.J. Dillion, S.J. Channock: Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips, Nat. Biotechnol. 17(4), 365–370 (1999)

    Article  Google Scholar 

  32. N. Narasimhan, D. OʼKane: Validation of SNP genotyping for human serum paraoxonase gene, Clin. Chem. 34(7), 589–592 (2001)

    Google Scholar 

  33. R. Sosnowski, M.J. Heller, E. Tu, A. Forster, R. Radtkey: Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications, Psychiatr. Genet. 12, 181–192 (2002)

    Article  Google Scholar 

  34. Y.R. Sohni, J.R. Cerhan, D.J. OʼKane: Microarray and microfluidic methodology for genotyping cytokine gene polymorphisms, Hum. Immunol. 64, 990–997 (2003)

    Article  Google Scholar 

  35. E.S. Pollak, L. Feng, H. Ahadian, P. Fortina: Microarray-based genetic analysis for studying susceptibility to arterial and venous thrombotic disorders, Ital. Heart J. 2, 569–572 (2001)

    Google Scholar 

  36. W.A. Thistlethwaite, L.M. Moses, K.C. Hoffbuhr, J.M. Devaney, E.P. Hoffman: Rapid genotyping of common MeCP2 mutations with an electronic DNA microchip using serial differential hybridization, J. Mol. Diagn. 5(2), 121–126 (2003)

    Article  Google Scholar 

  37. V.R. Mas, R.A. Fisher, D.G. Maluf, D.S. Wilkinson, T.G. Carleton, A. Ferreira-Gonzalez: Hepatic artery thrombosis after liver transplantation and genetic factors: Prothrombin G20210A polymorphism, Transplantation 76(1), 247–249 (2003)

    Article  Google Scholar 

  38. R. Santacroce, A. Ratti, F. Caroli, B. Foglieni, A. Ferraris, L. Cremonesi, M. Margaglione, M. Seri, R. Ravazzolo, G. Restagno, B. Dallapiccola, E. Rappaport, E.S. Pollak, S. Surrey, M. Ferrari, P. Fortina: Analysis of clinically relevant single-nucleotide polymorphisms by use of microelectric array technology, Clin. Chem. 48(12), 2124–2130 (2002)

    Google Scholar 

  39. A. Åsberg, K. Thorstensen, K. Hveem, K. Bjerve: Hereditary hemochromatosis: The clinical significance of the S64C mutation, Genet. Test. 6(1), 59–62 (2002)

    Article  Google Scholar 

  40. J.G. Evans, C. Lee-Tataseo: Determination of the factor V Leiden single-nucleotide polymorphism in a commercial clinical laboratory by use of NanoChip microelectric array technology, Clin. Chem. 48(9), 1406–1411 (2002)

    Google Scholar 

  41. T. Walker, J. Nadeau, P. Spears, J. Schram, C. Nycz, D. Shank: Multiplex strand displacement amplification (SDA) and detection of DNA sequences from Mycobacterium tuberculosis and other mycobacteria, Nucl. Acids Res. 22(13), 2670–2677 (1994)

    Article  Google Scholar 

  42. J. Cheng, E.L. Sheldon, L. Wu, A. Uribe, L.O. Gerrue, J. Carrino, M.J. Heller, J.P. OʼConnell: Electric field controlled preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips, Nat. Biotechnol. 16, 541–546 (1998)

    Article  Google Scholar 

  43. J. Cheng, E.L. Sheldon, L. Wu, M.J. Heller, J. OʼConnell: Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip, Anal. Chem. 70, 2321–2326 (1998)

    Article  Google Scholar 

  44. Y. Huang, J. Sunghae, M. Duhon, M.J. Heller, B. Wallace, X. Xu: Dielectrophoretic separation and gene expression profiling on microelectronic chip arrays, Anal. Chem. 74, 3362–3371 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael J. Heller , Benjamin Sullivan , Dietrich Dehlinger , Paul Swanson or Dalibor Hodko Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Heller, M.J., Sullivan, B., Dehlinger, D., Swanson, P., Hodko, D. (2010). Next-Generation DNA Hybridization and Self-Assembly Nanofabrication Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics